Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
K D A H E B M C
a) Xét tam giác ABM và tam giác ACM : AB=AC,AM chung ,BM=MC(vì M là trung điểm của BC gt)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
b) Tam giác ABC có AB=AC nên tam giác ABC cân tại A
=> đường trung tuyến AM đồng thời là đường cao
Vậy AM vuông góc BC
c) Xét tam giác AEH và tam giác CEM : AE=EC,EH=EM,\(\widehat{AEH}=\widehat{CEM}\)(2 góc đối đỉnh)
\(\Rightarrow\Delta AEH=\Delta CEM\left(c.gc\right)\)
d) Ta có KB//AM(vì vuông góc với BM
\(\Rightarrow\widehat{KBD}=\widehat{DAM}\)(2 góc ở vị trí so le trong)
Xét tam giác KDB và MDA (2 góc đối đỉnh)
\(\Rightarrow\Delta KDB=\Delta DAM\left(g.c.g\right)\)
\(\Rightarrow KD=DM\left(1\right)\)
Tam giác ABM vuông tại M có trung tuyến MD
Nên : MD=BD=AD(2)
Từ (1) và (2) ta có : KD=DM=DB=AD
Tam giác KAM có trung tuyến ứng với cạnh KM là \(AD=\frac{AM}{2}\)
Nên : Tam giác KAM vuông tại A
Tương tự : Tam giác MAH vuông tại A
Ta có: Qua1 điểm A thuộc AM có 2 đường KA và AH cùng vuông góc với AM
Nên : K,A,H thẳng thàng
Bài 2 :
x D A B C E y
a) Ta có tam giác DAB=tam giác CEB(c.g.c)
Do : DA=CB(gt)
BE=BA(gt)
\(\widehat{DBA}=\widehat{CBE}\)(Cùng phụ \(\widehat{ABC}\))
=> DA=EC
b) Do tam giác DAB=tam giác CEB(ở câu a)
=> \(\widehat{BDA}=\widehat{BCE}\Rightarrow\widehat{BDA}+\widehat{BCD}=\widehat{BCE}+\widehat{BCD}\)
Mà : \(\widehat{BDA}+\widehat{BCD}=90^0\)( Do Bx vuông góc BC)
=> \(\widehat{BCE}+\widehat{BCD}=90^0\)
=> DA vuông góc với EC
A B C I E D x
a) Vì AB // Cx nên góc ABC = BCE ( so le trong )
Xét ΔDBI và ΔECI có:
DB = EC (GT)
ABC = BCE ( chứng minh trên )
BI = CI (suy từ gt)
=> ΔDBI = ΔECI (c.g.c)
b) Do AB = AC nên ΔABC cân tại A
đc góc ABC = ACB (1)
mà AB // Cx => góc ABC = BCE (so le trong) (2)
Từ (1) và (2) suy ra ACB = BCE
Do đó CB là tia pg của góc ACE
c) Lại do ΔDBI = ΔECI nên góc BID = CIE (2 góc tương ứng)
mà 2 góc này đối nhau nên D, I, E thẳng hàng → đpcm
Chúc học tốt Tam Nguyen Thanh
a: Xét ΔBAD và ΔBKD có
BA=BK
\(\widehat{ABD}=\widehat{KBD}\)
BD chung
Do đó: ΔBAD=ΔBKD
Suy ra: \(\widehat{BAD}=\widehat{BKD}=90^0\)
hay DK\(\perp\)BC
b: Xét ΔBEC có BE=BC
nên ΔBEC cân tại B
mà BI là đường phân giác
nên BI là đường cao
a) Xét tam giác ABG và tam giác ACG, có:
BG=GC( G trung điểm BC)
AB=AC (gt)
AG: chung
Vậy tan giác ABG= tam giác ACG( c-c-c)
b) Ta có: Góc AGB+ góc AGC= 180° ( kề bù)
Mà góc AGC= góc AGB ( tam giác ABG= tam giác ACG)
Suy ra góc AGC= góc AGB = 180°: 2= 90°
Vậy AG vuông góc BC
c) Ta có: góc ABG+ góc GBD= 180° ( kề bù)
Góc ACG+ góc GCE= 180° ( kề bù )
Mà góc ABG= góc ACG ( tam giác ABG= tam giác ACG)
Vậy góc GBD= góc GCE
Xét tam giác BGD và tam giác CGE, có :
Góc DBG= góc ECG ( cmt)
BD= CE ( gt)
BG= GC ( G trung điểm BC)
Vậy tam giác BGD= tam giác CGE ( c-g-c)
Suy ra GD= GE ( 2 cạnh tương ứng)