K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 3 2024

c.

Từ câu a ta suy ra \(BD=CD\)

Xét hai tam giác vuông BDE và CDF có:

\(\left\{{}\begin{matrix}\widehat{B}=\widehat{C}\\BD=CD\end{matrix}\right.\)  \(\Rightarrow\Delta_{\perp}BDE=\Delta_{\perp}CDF\left(ch-gn\right)\)

\(\Rightarrow BE=CF\)

Mà \(AB=AC\left(gt\right)\Rightarrow AE+BE=AF+CF\)

\(\Rightarrow AE=AF\) (1)

Theo cm câu b ta có \(DE=DF\) (2)

(1);(2) \(\Rightarrow AD\) là trung trực của EF

\(\Rightarrow AD\perp EF\)

\(\Rightarrow EF||BC\) (cùng vuông góc AD)

16 tháng 9 2023

a: Xét ΔADB và ΔADC có

AB=AC
góc BAD=góc CAD

AD chung

=>ΔADB=ΔADC

b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

góc EAD=góc FAD

=>ΔAED=ΔAFD
=>AE=AF và DE=DF

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

28 tháng 2 2019

a, xet tam giac ABD va tam giac ACD co : AD chung

AB = AC do tam giac ABC can tai A (gt)

goc BAD = goc CAD do AD la phan giac cua goc A (gt)

=> tam giac ABD = tam giac ACD (c - g - c)

=> BD = CD (dn)

xet tam giac BED va tam giac CFD co : goc BED = goc CFD = 90 do ...

goc B = goc C do tam giac ABC can tai  A(gt)

=> tam giac BED = tam giac CFD (ch - gn)

=> DE = DF (dn)

b, cm o cau a

c, tam giac ABD = tam giac ACD (cau a)

=> goc ADC = goc ADB (dn)

goc ADC + goc ADB = 180 (kb)

=> goc ADC = 90

co DB = DC (cau a)

=> AD la trung truc cua BC (dn)

25 tháng 3 2022

dn là j ă bạn?

 

 

 

11 tháng 3 2020

A E F B C G D

Vì tam giác ABC cân tại A suy ra AB= AC, góc B= góc C ( T/c tam giác cân)

Xét tam giác AED và tam giác AFD

có góc AED=góc AFD = 900

góc BAD = góc CAD (GT)

AD chung

suy ra tam giác AED = tam giác AFD (cạnh huyền-góc nhọn)

suy ra DE = DF suy ra D thuộc đường trung trục của EF (1)

Mà AB=AC suy ra A thuộc đường TT của EF (2)

từ (1) và (2) suy ra AD là đường trung trực của EF

b) Xét tam giác  ABD và tam giácACD

có AD chung

góc BAD = góc CAD (GT)

AB=AC (GT)

suy ra tam giác  ABD = tam giác ACD (c.g.c)

suy ra BD = DC (hai cạnh tương ứng)

Xét tam giác EDB và tam giác GDC

có BD=DC (CMT)

góc EDB = góc CDG (đối đỉnh)

ED = DG (GT)

suy ra tam giác EDB =  tam giác GDC (c.g.c)

suy ra góc DEB = góc CGD

mà góc DEB = 900

suy ra góc CGD = 900

suy ra tam giác EGC vuông tại G

11 tháng 3 2020

A B D E F C G

Vì tam giác ABC cân tại A suy ra AB= AC, góc B= góc C ( T/c tam giác cân)

Xét tam giác AED và tam giác AFD

có góc AED=góc AFD = 900

góc BAD = góc CAD (GT)

AD chung

suy ra tam giác AED = tam giác AFD (cạnh huyền-góc nhọn)

suy ra DE = DF suy ra D thuộc đường trung trục của EF (1)

Mà AB=AC suy ra A thuộc đường TT của EF (2)

từ (1) và (2) suy ra AD là đường trung trực của EF

b) Xét tam giác  ABD và tam giácACD

có AD chung

góc BAD = góc CAD (GT)

AB=AC (GT)

suy ra tam giác  ABD = tam giác ACD (c.g.c)

suy ra BD = DC (hai cạnh tương ứng)

Xét tam giác EDB và tam giác GDC

có BD=DC (CMT)

góc EDB = góc CDG (đối đỉnh)

ED = DG (GT)

suy ra tam giác EDB =  tam giác GDC (c.g.c)

suy ra góc DEB = góc CGD

mà góc DEB = 900

suy ra góc CGD = 900

suy ra tam giác EGC vuông tại G

9 tháng 8 2017

đề bài kiểu j vậy

C ở đâu

19 tháng 12 2021

a: Xét ΔADB và ΔADC có 

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔADB=ΔADC

20 tháng 2 2018

Ta có \(\Delta ABC\)cân tại A ( AB = AC ) \(\Rightarrow\)\(\widehat{B}=\widehat{C}\)

Xét \(\Delta ABD\)và \(\Delta ACD\)có :

    AB = AC ( gt )

    BD = CD ( gt )

    \(\widehat{B}=\widehat{C}\)( CMT )

Suy ra \(\Delta ABD\)\(\Delta ACD\)

    

20 tháng 2 2018

còn b;c cậu ạ

6 tháng 8 2020

A B C D E F

A) XÉT \(\Delta ABC\)VUÔNG TẠI A

\(\Rightarrow BC^2=AB^2+AC^2\left(PYTAGO\right)\)

THAY \(10^2=6^2+AC^2\)

         \(100=36+AC^2\)

\(\Rightarrow AC^2=100-36\)

\(\Rightarrow AC^2=64\)

\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)

ta có \(AD+DC=AC\)

\(\Leftrightarrow3+DC=8\)

\(\Leftrightarrow DC=8-3=5\left(cm\right)\)

B) XÉT \(\Delta ABD\)VÀ \(\Delta EBD\)

\(\widehat{BAD}=\widehat{BED}=90^o\)

\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)

BD LÀ CẠNH CHUNG 

=>\(\Delta ABD\)=\(\Delta EBD\)( CH-GN)

\(\Rightarrow BA=BE\)(HAI CẠNH TƯƠNG ỨNG )

=> \(\Delta BAE\)LÀ TAM GIÁC CÂN TẠI B

c)  XÉT \(\Delta ADF\)VUÔNG TẠI A

\(\Rightarrow DF>AD\left(1\right)\)( CẠNH HUYỀN LỚN NHẤT )

VÌ \(\Delta ABD\)=\(\Delta EBD\)(CMT)

=> \(AD=ED\left(2\right)\)(HAI CẠNH TƯƠNG ỨNG )

TỪ (1) VÀ (2) 

\(\Rightarrow DF>ED\)

a: Xét ΔADB và ΔADC có

AB=AC
góc BAD=góc CAD

AD chung

=>ΔADB=ΔADC

b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

góc EAD=góc FAD

=>ΔAED=ΔAFD
=>AE=AF và DE=DF

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC