Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
A B C D E M H
a) Xét Δ CME và Δ BMA có:
EM = AM (gt)
CME = BMA (đối đỉnh)
CM = BM (gt)
Do đó, Δ CME = Δ BMA (c.g.c)
=> CE = AB (2 cạnh tương ứng) (1)
Chứng minh tương tự và => Δ ABH = Δ DBH (c.g.c)
=> AB = BD (2 cạnh tương ứng)
Từ (1) và (2) => CE = BD (đpcm)
b) Vì Δ ABH = Δ DBH (câu a) nên góc ABH = góc DBH (2 góc tương ứng)
=> BH là phân giác của góc ABD hay BC là phân giác của góc ABD (đpcm)
c) Vì \(AH\perp BC\) nên \(AD\perp BC\)
Mà AH = DH (gt)
Do đó, BC là đường trung trực của AD (đpcm)
A B C D E H M
a/ Ta có : AM = ME , BM = MC
=> Tứ giác ABEC là hình bình hành => CE = AB (1)
Xét tam giác ABH và tam giác BHD có góc BHA = góc BHD = 90 độ , BH là cạnh chung , AH = HD
=> tam giác ABH = tam giác BHD (c.g.c) => AB =BD (2)
Từ (1) và (2) suy ra được BD = CE
b/ Từ câu a) ta có tam giác ABH = tam giác BHD (c.g.c) => góc ABH = góc BHD
=> BC là tia phân giác góc ABD
c/ Ta có \(\hept{\begin{cases}AH=HD\\BH\perp AD\end{cases}}\) => BH là đường trung trực của AD hay
BC là đường trung trực của AD.
5 )
tự vẽ hình nha bạn
a)
Xét tam giác ABM và tam giác ACM có :
AM cạnh chung
AB = AC (gt)
BM = CM (gt)
suy ra : tam giác ABM = tam giác ACM ( c-c-c)
suy ra : góc BAM = góc CAM ( 2 góc tương ứng )
Hay AM là tia phân giác của góc A
b)
Xét tam giác ABD và tam giác ACD có :
AD cạnh chung
góc BAM = góc CAM ( c/m câu a)
AB = AC (gt)
suy ra tam giác ABD = tam giác ACD ( c-g-c)
suy ra : BD = CD ( 2 cạnh tương ứng)
C) hay tam giác BDC cân tại D
Bài 4: a) Xét ABE vàHBE có:
BE chung
ABE= EBH (vì BE là phân giác)
=> ABE=HBE (cạnh huyền- góc nhọn)
b, Vì ABE=HBE(cmt)
=> BA = BH và EA = EH
=> điểm B, E cách đều 2 mút của đoạn thẳng AH
=>BE là đường trung trực của đoạn thẳng AH
c, Vì AC vuông góc BK => EAK = \(90\) độ
EH vuông góc BC => EHC = 90 độ
Xét AEK vàHEC có:
EAK = EHC (= 90độ)(cmt)
AE = EH (cmt)
AEK = HEC (đối đỉnh)
=> AEK HEC (g.c.g)
=> EK = EC (2 cạnh tương ứng)
Xét HEC vuông tại H (vì EHC = 90 độ )
có EH < EC(cạnh huyền lớn hơn cạnh góc vuông)
Mà AE = EH (cmt) => AE < EC
Bạn tự vẽ hình nha!!!
3a.
Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)
=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE
=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE
=> BD là đường trung trực của AE.
3b.
Xét tam giác AFD và tam giác ECD có:
FAD = CED ( = 90 )
AD = ED (tam giác ABD = tam giác EBD)
ADF = EDC (2 góc đối đỉnh)
=> Tam giác ADF = Tam giác EDC (g.c.g)
=> DF = DC (2 cạnh tương ứng)
3c.
Tam giác ADF vuông tại A có:
AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)
mà FD = CD (theo câu b)
=> AD < CD.
3a.
Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)
=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE
=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE
=> BD là đường trung trực của AE.
3b.
Xét tam giác AFD và tam giác ECD có:
FAD = CED ( = 90 )
AD = ED (tam giác ABD = tam giác EBD)
ADF = EDC (2 góc đối đỉnh)
=> Tam giác ADF = Tam giác EDC (g.c.g)
=> DF = DC (2 cạnh tương ứng)
3c.
Tam giác ADF vuông tại A có:
AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)
mà FD = CD (theo câu b)
=> AD < CD.
Bài 1 : Bài giải
A B C H D F E
Bài 2 : Bài giải
A C B D E I F
Bài 3 : Bài giải
A B C D E 1 2 H I
Xét 2 tam giác \(\Delta ABI\text{ và }\Delta EBI\) có :
\(BA=BE\) ( gt )
\(BD\) : cạnh chung
\(\widehat{B_1}=\widehat{B_2}\) ( BD là đường phân giác của \(\widehat{B}\) )
\(\Rightarrow\text{ }\Delta ABD=\Delta EBD\text{ }\left(c.g.c\right)\)
\(\Rightarrow\text{ }AD=DE\text{ }\left(2\text{ cạnh tương ứng }\right)\)
....
Tự làm tiếp nha ! Mình bận rồi !
a) Xét ΔAHB vuông tại H và ΔDHB vuông tại H có
BH chung
AH=DH(H là trung điểm của AD)
Do đó: ΔAHB=ΔDHB(hai cạnh góc vuông)
⇒AB=DB(hai cạnh tương ứng)(1)
Xét ΔAMB và ΔEMC có
AM=EM(M là trung điểm của AE)
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔEMC(c-g-c)
⇒AB=EC(hai cạnh tương ứng)(2)
Từ (1) và (2) suy ra BD=CE(đpcm)
b) Ta có: ΔABH=ΔDBH(cmt)
nên \(\widehat{ABH}=\widehat{DBH}\)(hai góc tương ứng)
hay \(\widehat{ABC}=\widehat{DBC}\)
mà tia BC nằm giữa hai tia BA,BD
nên BC là tia phân giác của \(\widehat{ABD}\)(đpcm)
c) Xét ΔACH vuông tại H và ΔDCH vuông tại H có
CH chung
AH=DH(H là trung điểm của AD)
Do đó: ΔACH=ΔDCH(hai cạnh góc vuông)
⇒CA=CD(hai cạnh tương ứng)
Ta có: BA=BD(cmt)
nên B nằm trên đường trung trực của AD(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: CA=CD(cmt)
nên C nằm trên đường trung trực của AD(Tính chất đường trung trực của một đoạn thẳng)(4)
Từ (3) và (4) suy ra BC là đường trung trực của AD(đpcm)
d) Xét ΔBME và ΔCMA có
BM=CM(M là trung điểm của BC)
\(\widehat{BME}=\widehat{CMA}\)(hai góc đối đỉnh)
ME=MA(M là trung điểm của AE)
Do đó: ΔBME=ΔCMA(c-g-c)
⇒BE=CA(hai cạnh tương ứng)
Xét ΔABC và ΔECB có
BC chung
AB=EC(cmt)
CA=BE(cmt)
Do đó: ΔABC=ΔECB(c-c-c)