K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 11 2021

Kẻ đường cao BD ứng với AC

Trong tam giác vuông ABD:

\(\left\{{}\begin{matrix}cosA=\dfrac{AD}{AB}\\sinA=\dfrac{BD}{AB}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}AD=AB.cosA=8.cos60^0=4\\BD=AB.sinA=8.sin60^0=4\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow CD=AC-AD=8\)

Trong tam giác vuông BCD, áp dụng định lý Pitago:

\(BC=\sqrt[]{BD^2+CD^2}=4\sqrt{7}\) (cm)

NV
19 tháng 11 2021

undefined

9 tháng 6 2019

giúp vs ạ

15 tháng 8 2016

Giải:

Toán lớp 9
Kẻ đường cao từ đỉnh A của tam giác ABC cắt BC tại H.Trong tam giác ABC có :góc B=70
0, góc C=50nên góc A=600

Xét tam giác vuông ABH,ta có:góc BAH=200.Tương tự,ta cũng có góc CAH=400

Áp dụng HTCVGTTGV ABH,ta có :

BH=AB.sin góc BAH=25.sin 200=8,55 (cm)
AH=BH.tan góc B=8,55.tan 70=23,49 (cm)
Tương tự,xét tam giác vuông AHC,ta có:
HC=AH.tan góc HAC=23,49.tan 400 =19,71 (cm)

Toán lớp 9

Theo đề bài,ta có:BH=12cm;CH=18cm nên BC=30cm.

Áp dụng HTCVGTGV ABH,ta có: AH=tan góc B.BH=tan 600 .12 =12√3 (cm)
Vì tam giác ABH là tam giác vuông nên góc A1
 =300

Xét tam giác vuông AHC,ta có:
AH2 +HC2  =AC2
(12√3) +18=AC2

=>AC=6√21 (cm)

Áp dụng HTCVGTGV ABC,ta có: AH=tan góc C.CH

                                                       12√3=tan góc C.18

                                                       => góc C=49=>góc A=41=>gócA= 710

Tương tự, Áp dụng HTCVGTGV ABH,ta có: AB=24cm

Vậy AB= 24cm, AC=6√21cm,BC=30cm,AH=12√3cm,góc A=710,góc C=490    

Ròy đóa Tuyền thanghoa

 

 

 

17 tháng 8 2016

tui làm xong rồi!!! đăng lên hỏi thử coi đáp án đúng ko thôi

30 tháng 5 2019

Theo bất đẳng thức tam giác, ta có:

\(AB+BC>AC< AB-BC\)

\(\Rightarrow6+4>AC< 6-4\)

\(\Rightarrow10>AC< 2\)

.....

Còn dữ liệu B = 60 độ em ko bt lm sao để giải AC chính xác, dù j e cx chỉ ms lớp 7 nên lm đc cách này thôi

30 tháng 5 2019

nhầm, đổi dấu < thành > nhé

14 tháng 6 2017

Áp dụng định lý Pytago ta có :

\(BC^2=12^2+16^2=400=20^2\)

BC > 0 nên BC = 20 ( cm )

Lại có :

\(2S_{ABC}=AB.AC=BC.AH\)

\(\Leftrightarrow192=20AH\)

AH = 9,6 ( cm )

Vậy ...