K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có \(AC^2=AB^2+BC^2\)

nên ΔABC vuông tại B

b: Xét ΔACD có

AB là đường cao
AB là đường trung tuyến

Do đó,ΔACD cân tại A

c: Xét ΔMCD có

MB là đường cao

MB là đường trung tuyến

Do đó: ΔMCD cân tại M

mà MB là đường cao

nên MB là phân giác của góc CMD

16 tháng 4 2018

Tao ko bit

21 tháng 4 2018

de lam cac ban

...........

14 tháng 4 2019

a, xét t.giác BMC và t.giác DMA có:

           BM=DM(gt)

          \(\widehat{AMD}\)=\(\widehat{CMB}\)(vì đối đinh)

          AM=MC(gt)

=>t.giác BMC=t.giác DMA(c.g.c)

=>\(\widehat{ADM}\)=\(\widehat{MBC}\)mà 2 góc này ở vị trí so le nên AD//BC

b,xét t.giác MAB và t.giác MCD có:

            MA=MC(gt)

            \(\widehat{AMB}\)=\(\widehat{CMD}\)(vì đối đỉnh)

            MB=MD(gt)

=>t.giác MAB=t.giác MCD(c.g.c)

=>\(\widehat{MDC}\)=\(\widehat{MBA}\) mà 2 góc này ở vị trí so le nên AB//DC

xét t.giác DAB và t.giác DCB có:

          \(\widehat{ADB}\)=\(\widehat{CBD}\)(vì so le)

          DB cạnh chung

          \(\widehat{ABD}\)=\(\widehat{CDB}\)(vì so le)

=>t.giác DAB=t.giác DCB(g.c.g)

=>DA=DC

=>t.giác ACD cân tại D

           

21 tháng 5 2020

a)
Ta có: ΔABC cân tại A => góc ABC = góc ACB
mà ACB = ECN ( 2 góc đối đinh )
==> ABD = ECN ( vì D ∈ BC )
Xét ΔDBM và ΔECN có:
+ BDM= NEC = 90°
+ BD = EC (gt)
+ ABD = ECN (cmt)
==> ΔDBM = ΔECN ( c.g.vuông - g.n.kề )
==> MD = NE ( 2 cạnh tương ứng ) ( đpcm )

a) Xét tam giác BMC và tam giác DMA có:

AM=AC( M là trung điểm của AC)

AMD^= BMC^( 2 góc đối đỉnh)

BM=MD( gt)

Suy ra: tam giác BMC= tam giác DMA( c.g.c)( đpcm)

b) Xét tam giác DMC và tam giác BMA có:

MB= MD( gt)

DMC^= AMB^( đối đỉnh)

MA=MC( M là trung điểm của AC)

Suy ra: Tam giác DMC= tam giác BMA( c.g.c)

=> AB=DC( 2 cạnh tương ứng)(1)

Mà AB= AC( Tam giác ABC cân tại A)(2)

Từ (1) và (2)

=> DC=AC

=> tam giác ADC cân tại C( đpcm)

 c) có tam giác BMC = tam giác DMA(cmt)

=> BM=DM ( 2 cạnh t/ ứ)

=> M là trung điểm của BD

xét tam giác BDE có

 EM là trung tuyến ứng vs BD ( M là trung điểm của BD)

CI là trung tuyến ứng vs BE ( I là trung điểm của BE)

mà EM giao vs CI tại C

=> C là trọng tâm

=> DC là trung tuyến ứng vs BE

mà CI cũng là đường trung tuyến ứng vs BE(cmt)

=> DC trùng với CI

=> D,C,I thẳng hàng

vậy DC đi qua trung điểm I của BÉ