K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2018
a) xét tam giác ABC và tam giác HBA có: BAC=BHA (90°) B chung => tam giác ABC~ tam giác HBA (g.g) b) Áp dụng định lý py ta go trong tam giác ABC vuông tại A BC 2 = AC 2 + AB 2 BC 2 = (4,5)2 + (6)2 BC 2 = 20.25 + 36 BC 2 = 56.25 BC = căn 56.25 = 7.5 (cm) c) Áp dụng định lý đảo ta lét ta có AE/ AB = AF / AC (E € AB, F € AC) => EF// BC
24 tháng 2 2016

Trong tam giác ABH có BO là phân giác của góc ABH nen theo t/c đường phân giác trong tam giác ta có
    OA/OH=AB/BH
hay 5/4=7,5/BH 

BH=6cm 
Mặt khác AH là đường cao đồng thời là đường trung tuyến nên H là trung điểm BC

suy ra BC=2BH 

BC=6.2=12cm

24 tháng 3 2017

A H B C

a.)

\(\Delta HBA\)~\(\Delta ABC\) (\( \hat{B}\) chung)

\(\Delta HAC\)~\(\Delta ABC\) ( \( \hat{C}\) chung)

=> \(\Delta HAC\)~\(\Delta HBC\)

b.)

Áp dụng định lý py ta go vào tam giác vuông AHB ta có:

BH2 = AB2 - AH2 = 152 - 122 = 81

=> BH = \(\sqrt{81}=9cm\)

Tam giác HAC ~ tam giác HBC

=> \(\dfrac{BH}{BA}=\dfrac{AH}{AC}=>AC=\dfrac{15.12}{9}=20cm\)

Áp dụng định lý py-ta-go vào tam giác vuông HAC

ta có: HC2 = AC2 - AH2 = 202 - 122 =256

=> HC = \(\sqrt{257}=16cm\)

17 tháng 8 2018

A B C H E F 5 cm 12 cm

a) Áp dụng định lí Py-ta-go cho  \(\Delta ABC\)vuông tại A ta có :

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC^2=5^2+12^2\)

\(\Leftrightarrow BC^2=169\)

\(\Leftrightarrow BC=13\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác ta có :  \(AB.AC=BC.AH\)

\(\Leftrightarrow AH=\frac{5.12}{13}=\frac{60}{13}\left(cm\right)\)

b) Áp dụng hệ thức lượng ta có  \(AB^2=BH.BC\Leftrightarrow BH=\frac{5^2}{13}=\frac{25}{13}\left(cm\right)\)

Do BE là tia phân giác \(\widehat{ABC}\)

\(\Rightarrow\frac{AE}{HE}=\frac{AB}{BH}=5\div\frac{25}{13}=\frac{13}{5}\)

Theo dãy tỉ số bằng nhau ta được :

\(\frac{AE}{13}=\frac{HE}{5}=\frac{AE+HE}{13+5}=\frac{AH}{18}=\frac{60}{13}\div18=\frac{10}{39}\)

\(\Rightarrow AE=\frac{10}{39}\times13=\frac{10}{3}\left(cm\right)\)

Mặt khác BF là tia phân giác  \(\widehat{ABC}\)

\(\Rightarrow\frac{AF}{FC}=\frac{AB}{BC}=\frac{5}{13}\)

Theo dãy tỉ số bằng nhau ta được :

\(\frac{AF}{5}=\frac{FC}{13}=\frac{AF+FC}{5+13}=\frac{AC}{18}=\frac{2}{3}\)

\(\Rightarrow AF=\frac{2}{3}\times5=\frac{10}{3}\left(cm\right)\)

Xét  \(\Delta AEF\)có  \(AE=AF\left(=\frac{10}{3}cm\right)\)

\(\Rightarrow\Delta AEF\)cân tại A ( đpcm )

Vậy ...