Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
xét tam giác ABD và tam giác ACB có:
góc A chung;góc ABD=góc ACB =>tam giác ABD đồng dạng tam giác ACB(đpcm)
=>AD/AB=AB/AC =>AD=AB*AB/AC=2*2/4=1.vậy AD=1cm
ta lại có
AC=AD+DC =>DC=AC-AD=4-1=3cm.vậy DC=3cm
b)xét tm giác ABH vuông tại H và tam giác ADK vuông tại K có:
góc ABH=góc ADK( do tam giác ABC đồng dạng tam giác ABD,cmt)
=>tam giác ABH đồng dạng tam giác ADK(g-g)
=>AB/AD=AH/AK=BH/DK
mà AB/AD=2/1
=>AB/AD=AH/AK=BH/DK=2/1
mặt khác:
diện tích tam giác ABH/diện tích tam giác ADK=k2
=(2/1)2=4/1
=>diện tích tam giác ABH=4 diện tích tam giác ADK(đpcm)
(câu b mk cũng kg bit đúng kg nữa,mk làm theo suy nghĩ của mk,có j sai,b góp ý giúp mk nhé)
(Hình bạn tự vẽ)
a) Ta có: \(\dfrac{AB}{BC}=\dfrac{6}{9}=\dfrac{2}{3}\)
\(\dfrac{BC}{BD}=\dfrac{9}{6+7,5}=\dfrac{2}{3}\)
Xét ΔABC và ΔCBD có:
Góc B chung
\(\dfrac{AB}{BC}=\dfrac{BC}{BD}\)\(\left(=\dfrac{2}{3}\right)\)
⇒ΔABC ∼ ΔCBD (c.g.c)
b) Theo câu a ta có: ΔABC ∼ ΔCBD
⇒ \(\dfrac{AB}{AC}=\dfrac{CB}{CD}\)\(=\dfrac{6}{7,5}=\dfrac{9}{CD}\)
⇒ \(CD=\dfrac{7,5.9}{6}\)\(=\dfrac{45}{4}=11,25\)
c) Theo câu a ta có: ΔABC ∼ ΔCBD
⇒ Góc BAC = góc BCD (1)
Xét ΔBCD có: \(\dfrac{BA}{AD}=\dfrac{BC}{CD}\)
Hay \(\dfrac{6}{7,5}=\dfrac{9}{11,25}\)\(=\dfrac{4}{5}\)
⇒ CA là phân giác góc BCD
⇒ Góc ACB= góc ACD (2)
Từ (1), (2) ⇒ góc BAC = 2 góc ACB