K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

14 tháng 7 2018

A B C H

a)  \(BC=BH+HC=2+6=8\)

Áp dụng hệ thức lượng ta có:

        \(AH^2=BH.HC\)

\(\Rightarrow\)\(AH^2=2.6=12\)

\(\Rightarrow\)\(AH=\sqrt{12}=2\sqrt{3}\)

          \(AB^2=BH.BC\)

\(\Rightarrow\)\(AB^2=2.8=16\)

\(\Rightarrow\)\(AB=4\)

            \(AC^2=HC.BC\)

\(\Rightarrow\)\(AC^2=6.8=48\)

\(\Rightarrow\)\(AC=4\sqrt{3}\)

b)  \(sinB=\frac{AH}{AB}=\frac{2\sqrt{3}}{4}=\frac{\sqrt{3}}{2}\)

     \(cosB=\frac{BH}{AB}=\frac{2}{4}=\frac{1}{2}\)

     \(tanB=\frac{AH}{BH}=\frac{2\sqrt{3}}{2}=\sqrt{3}\)

    \(cotB=\frac{BH}{AH}=\frac{2}{2\sqrt{3}}=\frac{1}{\sqrt{3}}\)

27 tháng 10 2023

a: Xét ΔBAC có \(AC^2=BA^2+BC^2\)

nên ΔBAC vuông tại B

b: Xét ΔBAC vuông tại B có

\(sinA=\dfrac{BC}{CA}=\dfrac{42}{58}=\dfrac{21}{29}\)

\(cosA=\dfrac{AB}{AC}=\dfrac{40}{58}=\dfrac{20}{29}\)

\(tanA=\dfrac{BC}{BA}=\dfrac{21}{20}\)

\(cotA=\dfrac{BA}{BC}=\dfrac{20}{21}\)

c: Xét ΔBAC vuông tại B có BH là đường cao

nên \(BH\cdot AC=BA\cdot BC\)

=>\(BH\cdot58=40\cdot42=1680\)

=>\(BH=\dfrac{840}{29}\left(cm\right)\)

Xét ΔBAC vuông tại B có BH là đường cao

nên \(BA^2=AH\cdot AC\)

=>\(AH\cdot58=40^2=1600\)

=>\(AH=\dfrac{800}{29}\left(cm\right)\)

Xét ΔBHA vuông tại H có HE là đường cao

nên \(\left\{{}\begin{matrix}HE\cdot BA=HB\cdot HA\\BE\cdot BA=BH^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}HE\cdot40=\dfrac{840}{29}\cdot\dfrac{800}{29}\\BE\cdot40=\left(\dfrac{840}{29}\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}HE=\dfrac{16800}{841}\left(cm\right)\\BE=\dfrac{17640}{841}\left(cm\right)\end{matrix}\right.\)

Xét tứ giác BEHF có

\(\widehat{BEH}=\widehat{BFH}=\widehat{FBA}=90^0\)

=>BEHF là hình chữ nhật

=>\(BF=HE=\dfrac{16800}{841}\left(cm\right)\)

d: Xét tứ giác BPMQ có

\(\widehat{BPM}=\widehat{BQM}=\widehat{QBP}=90^0\)

=>BPMQ là hình chữ nhật

17 tháng 7 2018

A B C H

a)  Áp dụng định lý Pytago ta có:

            \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\)\(BC^2=5^2+12^2=169\)

\(\Leftrightarrow\)\(BC=13\)

b)  Áp dụng hệ thức lượng ta có:

      \(AB.AC=BC.AH\)

\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}=4\frac{8}{13}\)

        \(AB^2=BH.BC\)

\(\Rightarrow\)\(BH=\frac{AB^2}{BC}=\frac{25}{13}\)

c)    \(sinB=\frac{AC}{BC}=\frac{12}{13}\)             \(tanB=\frac{AC}{AB}=\frac{12}{5}\)

      \(cosB=\frac{AB}{BC}=\frac{5}{13}\)               \(cotB=\frac{AB}{AC}=\frac{5}{12}\)

cho tam giác ABC vuông tại A .Biết AB=7cm và AC=21 cm .tính các tỉ số lượng giác của góc B vá góc C 

25 tháng 10 2017

mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày 

A B C 4 9

Ta có : BC = BH +HC = 4 + 9 = 13 (cm)

Theo hệ thức lượng trong tam giác vuông ta có:

- AC2 = BC * HC 

AC2 = 13 * 9 = 117 

AC = \(3\sqrt{13}\)(cm)

- AB2 =BH * BC 

AB2 = 13 * 4 = 52 

AB = \(2\sqrt{13}\)(CM)

25 tháng 10 2017

trong sbt có giải ý. dựa vào mà lm