Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề si rồi trong tam giác vuông cạnh huyền phải lớn nhất chứ
Theo định lý sin ta có:
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinA=\dfrac{1}{2}\cdot4\cdot8\cdot sin30^o=8\left(cm^2\right)\)
Mà: ΔAEC vuông tại E ta có:
\(AE=sinA\cdot AC=sin30^o\cdot8=4\left(cm\right)\)
ΔABD vuông tại D nên ta có:
\(AD=sinA\cdot AB=sin30^o\cdot4=2\left(cm\right)\)
Theo định lý sin ta có:
\(S_{AED}=\dfrac{1}{2}\cdot AE\cdot AD\cdot sinA\)
\(\Rightarrow S_{AED}=\dfrac{1}{2}\cdot4\cdot2\cdot sin30^o=2\left(cm^2\right)\)
Bài 1) Vì B = 30°
=》sinB = 1/2 (tính chất )
=》cosB = \(\sqrt{ }\)3/2 ( tính chất )
=》 tanB = \(\sqrt{ }\)3/3( tính chất )
=》 cotB = \(\sqrt{ }\)3( tính chất )
Lại có B + C = 90°
=》 sinB = cosC = 1/2
=》 cosB = sinC = \(\sqrt{ }\)3/2
=》tanB = cotC = \(\sqrt{ }\)3/3
=》cotB = tanC = \(\sqrt{ }\)3
SinA = BC/BC = 1
CosA có thể bằng AB/BC hay AC/BC (loại)
TanA có thể bằng BC/AB hay BC/AC (loại)
CotA có thể bằng AB/BC hay AC/BC (loại)
Bài 2) Vì \(\Delta\)MNP vuông cân tại M
=》 MN = MP = b
Áp dụng định lý Py ta go vào \(\Delta\)ABC có :
NM2 +MP2 = NP2
=》 NP2 =b2 + b2 =2b2
=》NP = \(\sqrt{ }\)2b2
SinN = MP/NP = b/\(\sqrt{ }\)2b2 = \(\sqrt{ }\)2/2
CosN = NM/NP = b/\(\sqrt{ }\)2b2 = \(\sqrt{ }\)2/2
TanN = MP/NM = b/b =1
CotN = NM/MP = b/b = 1
Vì N + P =90°
=》sinN = cosP = \(\sqrt{ }\)2/2
=》cosN = sinP =\(\sqrt{ }\)2/2
=》tanN = cotP = 1
=》cotN = tanP = 1
heo định lí hàm số Cos ta có
AB^2+AC^2 - 2*AB*AC*Cos(góc A)= BC^2
=> theo ct Heeroong tính S(ABC)= căn( p(p-AB)(p-BC)(p-CA))
mình chỉ hướng dẫn thôi nhá vì bh mình k có mt
c2; S= 1/2 AB*AC*Sin30
cách này nhanh hơn nhiều