Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A C H
\(\frac{AB}{AC}=\frac{5}{6}\)\(\Rightarrow\)\(\frac{AB}{5}=\frac{AC}{6}=x\) \(\left(x>0\right)\)
\(\Rightarrow\)\(AB=5x;\)\(AC=6x\)
Áp dụng hệ thức lượng ta có:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
\(\Leftrightarrow\)\(\frac{1}{9}=\frac{1}{25x^2}+\frac{1}{36x^2}\)
\(\Leftrightarrow\)\(\frac{61}{900x^2}=\frac{1}{9}\)
\(\Rightarrow\)\(900x^2=549\)
\(\Rightarrow\)\(x=\sqrt{\frac{549}{900}}=\frac{\sqrt{61}}{10}\)
\(\Rightarrow\)\(AB=\frac{\sqrt{61}}{2}\); \(AC=\frac{3\sqrt{61}}{5}\)
Áp dụng Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\) \(BC=61x^2\)
\(\Leftrightarrow\)\(BC=x\sqrt{61}\)
\(\Leftrightarrow\)\(BC=\frac{\sqrt{61}}{10}.\sqrt{61}=6,1\)
p/s: bạn tham khảo nhé, do số không đẹp nên có lẽ mk tính toán sai 1 số chỗ, bạn bỏ qua và ktra nhé, sai đâu ib mk
B A C H
\(\frac{AB}{AC}=\frac{5}{6}\)\(\Rightarrow\)\(\frac{AB}{5}=\frac{AC}{6}=x\) \(\left(x>0\right)\)
\(\Rightarrow\)\(AB=5x;\)\(AC=6x\)
Áp dụng định lý Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\)\(BC^2=61x^2\)
\(\Leftrightarrow\)\(BC=x\sqrt{61}\)
Áp dụng hệ thức lượng ta có:
\(AB.AC=AH.BC\)
\(\Leftrightarrow\)\(30x^2=3x\sqrt{61}\)
\(\Leftrightarrow\)\(x=\frac{\sqrt{61}}{10}\)
Đến đây bạn thay x vào các biểu thức tính AB,AC,BC ở trên nhé
a) Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
1.
Kẻ đường cao CH
Xét tam giác vuông HCB,ta có:
góc B + góc C1 =900
600 + góc C1 =900
=> góc C1 = 300 => góc C2 =100
Áp dụng hệ thức cạnh và góc trong tam giác vuông CBH và tam giác vuông CAH,ta có:
HB= BC x cot góc B = 9 x cot 600 = 3√3 (cm)
=>HC=BC2 - HB2 =92 - (3√3)2 = 3√6 (cm) (Đinh lí Py-ta-go)
AH= HC x tan góc C2 = 3√6 x tan 100 =1,3 (cm)
Ta có: AB = AH + HB nên AB = AH + HB =6,49 (cm)
AC = AH : sin góc C2 = 7,49 (cm)
Vậy AB = 6,49 cm ; AC = 7,49 cm
2.
Kẻ đường cao AH.
Áp dụng hệ thức cạnh và góc trong tam giác vuông ABH,ta có:
BH = AB x cos góc B = 3,2 x cos 700 = 1,09 (cm)
AH= BH x tan góc B =1,09 x tan 700 = 2,99 (cm)
Ta có : BC - BH = HC
=> HC = 6,2 - 2,99 = 3,21 (cm)
Áp dụng định lí Py-ta-go vào tam giác vuông AHC,ta có:
AC2 = AH2 +HC2 = (2,99)2 +(3,21)2 =>AC= 4,39 (cm)
Vậy AC = 4,39 cm.
Sai có gì góp ý với tui nha
3) Xét tam giác vuông BHC và tam giác vuôn BFE có: ^B chung
=> Tam giác BHC ~ Tam giác BFE
=> \(\frac{BH}{BF}=\frac{BC}{BE}\)
=.> \(\frac{BH}{BC}=\frac{BF}{BE}\)
Xét tam giác BHF và tam giác BCE có:
góc B chung
\(\frac{BH}{BC}=\frac{BF}{BE}\)( chứng minh trên)
=> Tam giác BHF ~ tam giác BCE
4.
Vì \(\frac{BH}{BC}=\frac{BF}{BE}\)=> \(BC.BF=BH.BE=CD^2=4^2=16\)
=> \(BF=16:BC=16:3=\frac{16}{3}\)(cm)
=> \(S_{BFE}=\frac{1}{2}.BF.EF=\frac{16}{3}.4=\frac{64}{3}\)(cm^2)
Tam giác BFE Vuông tại F. Áp dụng định lí Pitago
=> \(BE^2=BF^2+EF^2=\left(\frac{16}{3}\right)^2+4^2=\frac{400}{9}\Rightarrow BE=\frac{20}{3}\)(cm)
Theo câu a đã tính được \(BH=\frac{12}{5}\)(cm)
Xét tam giác BEF và Tam giác BHF có chung đường cao hạ từ F
=> Có tỉ số \(\frac{S_{BHF}}{S_{BEF}}=\frac{BH}{BE}=\frac{\frac{12}{5}}{\frac{20}{3}}=\frac{9}{25}\)
=> \(S_{BHF}=\frac{9}{25}.S_{BEF}=\frac{9}{25}.\frac{64}{3}=\frac{192}{25}\)(cm^2)