Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C M N Áp dụng định lí Pytago, ta có:
BC2 = AB2 + AC2
= 82 + 152
= 289
\(\Rightarrow\) BC = \(\sqrt{289}\) = 17.
Vì M là trung điểm BC nên:
MC = 1/2 BC = 1/2 . 17 = 8,5 (cm).
Xét hai tam giác ABC và MNC:
\(\widehat{A}=\widehat{M}=\)900 (1V)
\(\widehat{C}\): góc chung
\(\Rightarrow\) Tam giác ABC đồng dạng với tam giác MNC.
\(\Rightarrow\dfrac{AB}{MN}=\dfrac{AC}{MC}\Rightarrow\dfrac{8}{MN}=\dfrac{15}{8,5}\Rightarrow MN=\dfrac{8.8,5}{15}=4,53cm\)

a) Xét △ABC có : AD = DB ( gt ) , AE = EC ( gt )
⇒ DE là đường trung bình △ABC
⇒ DE // BC và DE = \(\frac{1}{2}\) BC
⇒ DECB là hình thang ( định nghĩa hình thang )
b) Vì DE = \(\frac{1}{2}\)BC ( cma ) mà BF = FC = \(\frac{1}{2}\) BC ( gt )
⇒ DE = BF
Tứ giác DEFB có : DE = BF ( cmt ) , DE // BF ( vì DE // BC )
⇒ DEFB là hình bình hành

a) Xét tam giác \(HBA\)và tam giác \(ABC\):
\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)
\(\widehat{B}\)chung
Suy ra tam giác \(HBA\)đồng dạng với tam giác \(ABC\).
b) Xét tam giác \(ABC\)vuông tại \(A\):
\(BC^2=AB^2+AC^2\)(Định lí Pythagore)
\(\Leftrightarrow BC=\sqrt{AC^2+AB^2}=\sqrt{6^2+8^2}=10\left(cm\right)\).
\(AB^2=BH.BC\)(Hệ thức trong tam giác vuông)
\(\Leftrightarrow AH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6\left(cm\right)\)
\(BH=BC-BH=10-3,6=6,4\left(cm\right)\)
(Bạn tự vẽ hình nhé).
a,Xét 2 tam giác vuông HBA và ABC có:
Góc H= góc A (=90 độ).
AB chung.
=> Tam giác HBA đồng dạng với tam giác ABC (ch-gv) (đpcm).
b, Áp dụng định lí Py-ta-go vào tam giác vuông ABC ta có:
BC2= AB2 + AC2
Hay BC2 = 62 + 82
= 36 + 64
= 100
=> BC= 10 (cm).
Ta có tam giác HBA đồng dạng với tam giác ABC (theo a)
=> BH/AB = AB/ BC = AH/AC
Hay BH/6 = 6/10 = AH/8
=> BH = 6.6/10 = 3,6 (cm).
AH= 8.6/10 = 4,8 (cm).
Vậy BC=10 cm, BH=3,6 cm và AH=4,8 cm.

Xét ΔABI có MK//BI
nên MK/BI=AK/AI
=>MK/CI=AK/AI(1)
Xét ΔACI có NK//IC
nên NK/IC=AK/AI(2)
Từ (1) và (2) suy ra MK=KN
hay K là trung điểm của MN