Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C 10 20 D 5
Xét tam giác ABD và tam giác ACB ta có ;
^BAD = ^BAC = 900
\(\frac{AB}{AC}=\frac{AD}{AB}=\frac{10}{20}=\frac{5}{10}=\frac{1}{2}\)
Vậy tam giác ABD ~ tam giác ACB ( c.g.c )
=> ^ABD = ^ACB ( 2 góc tương ứng )
Hình bạn tự vẽ ạ.
a, Xét \(\Delta ADE\) và \(\Delta ABC\) có :
\(\dfrac{AD}{AB}=\dfrac{7}{14}=\dfrac{1}{2}\)
\(\dfrac{AE}{AC}=\dfrac{10}{20}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(=\dfrac{1}{2}\right)\)
Mà \(\widehat{A}:chung\)
\(\Rightarrow\Delta ADE\sim\Delta ABC\left(c-g-c\right)\)
b, Ta có : \(\Delta ADE\sim\Delta ABC\left(cmt\right)\)
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{ED}{BC}\)
hay \(\dfrac{7}{14}=\dfrac{ED}{18}\)
\(\Rightarrow ED=\dfrac{7.18}{14}=9\left(cm\right)\)
A B C D M H
a/
AB = AC => tg ABC cân tại A \(\Rightarrow\widehat{ACB}=\widehat{ABC}\)
Xét tg ABC có
\(\widehat{DAB}=\widehat{ABC}+\widehat{ACB}\) (trong tg số đo góc ngoài bằng tổng số đo hai góc trong khồng kề với nó)
\(\Rightarrow\widehat{DAB}=\widehat{ACB}+\widehat{ACB}=2\widehat{ACB}\)
b/
AC = AD (gt); MD = MB (gt) => MA là đường trung bình của tg DBC
=> MA//BC
c/
\(AH\perp BC\) (gt); tg ABC cân tại A (cmt) => HB = HC (trong tg cân đường cao hạ từ đỉnh tg cân đồng thời là đường trung tuyến)
AC = AD (gt)
=> HA là đường trung bình của tg DBC => AH//BD
Xét ΔBAC và ΔBDA có
BA/BD=BC/BA
góc B chung
Do đó: ΔBAC\(\sim\)ΔBDA
Suy ra: \(\widehat{ACB}=\widehat{DAB};\widehat{ADB}=\widehat{CAB}\)