Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xem lại câu hỏi
b/
Xét tg ABN và tg ABC có chung đường cao từ B->AC nên
\(\frac{S_{ABN}}{S_{ABC}}=\frac{AN}{AC}=\frac{1}{4}\Rightarrow S_{ABN}=\frac{S_{ABC}}{4}\)
Xét tg AMN và tg ABN có chung đường cao từ N->AB nên
\(\frac{S_{AMN}}{S_{ABN}}=\frac{AM}{AB}=\frac{1}{4}\Rightarrow S_{AMN}=\frac{S_{ABN}}{4}=\frac{\frac{S_{ABC}}{4}}{4}=\frac{S_{ABC}}{16}\Rightarrow\frac{S_{AMN}}{S_{ABC}}=\frac{1}{16}\)
c/
Xét tg ACM và tg ABC có chung đường cao từ C->AB nên
\(\frac{S_{ACM}}{S_{ABC}}=\frac{AM}{AB}=\frac{1}{4}\Rightarrow S_{ACM}=\frac{S_{ABC}}{4}\)
\(\Rightarrow S_{ABM}=S_{ACM}=\frac{S_{ABC}}{4}\)
\(\Rightarrow S_{AMN}+S_{BMN}=S_{AMN}+S_{CMN}\Rightarrow S_{BMN}=S_{CMN}\)
Hai tg BMN và tg CMN có chung MN nên đường cao từ B->MN = đường cao từ C->MN \(\Rightarrow BMNC\) là hình thang
\(\frac{AM}{AB}=\frac{1}{4}\Rightarrow\frac{AM}{BM}=\frac{1}{3}\)
Xét tg AMN và tg BMN có chung đường cao từ N->AB nên
\(\frac{S_{AMN}}{S_{BMN}}=\frac{AM}{BM}=\frac{1}{3}\) Hai tg này có chung MN nên
\(\frac{S_{AMN}}{S_{BMN}}=\)đường cao từ A->MN / đường cao từ B->MN \(=\frac{1}{3}\)
Xét tg AMK và tg BMK có chung MK nên
\(\frac{S_{AMK}}{S_{BMK}}=\)đường cao từ A->MN / đường cao từ B->MN \(=\frac{1}{3}\)
Xét tg BMK và tg EMK có chung cạnh MK và đường cao từ B->MN = đường cao từ E->MN
\(\Rightarrow S_{BMK}=S_{EMK}\)
\(\Rightarrow\frac{S_{AMK}}{S_{BMK}}=\frac{S_{AMK}}{S_{EMK}}=\frac{1}{3}\)
Hai tg AMK và tg EMK có chung đường cao từ M->AE nên
\(\frac{S_{AMK}}{S_{EMK}}=\frac{AK}{KE}=\frac{1}{3}\Rightarrow\frac{KE}{AK}=3\)
Xét tam giác AMN và tam giác ABC có
\(\hept{\begin{cases}\frac{AM}{MB}=\frac{AN}{AC}=\frac{1}{3}\\\widehat{A}\text{ chung}\end{cases}}\Rightarrow\frac{S_{AMN}}{S_{ABC}}=\frac{1}{3}.\frac{1}{3}=\frac{1}{9}\)
=> SAMN = \(\frac{1}{9}.432=48cm^2\)
Nối MI ; Xét tam giác BMI và tam giác BAC có
\(\hept{\begin{cases}\frac{BM}{AB}=\frac{BI}{BC}=\frac{2}{3}\\\widehat{B}\text{ chung}\end{cases}}\Leftrightarrow\frac{S_{BMI}}{S_{ABC}}=\frac{2}{3}.\frac{2}{3}=\frac{4}{9}\Leftrightarrow S_{BMI}=432\times\frac{4}{9}=192\) cm2
Khi đó MINC hình bình hành
và SMINC = SABC - SMBI - SMAN = 432 - 192 - 48 = 192 cm2
mà SMINC = 2.SMNI => SMNI = 96 cm2
=> SMNBI = SMNI + SMBI = 96 + 48 = 144 cm2
Bạn thích thì vẽ, không vẽ cũng không sao, bài này mình cho mấy bạn Ôn thi vào lớp 6 tham khảo ...
Nối AG. Ta thấy:
S BCD= 1/3 SACD (Chung chiều cao hạ từ đỉnh C, đáy BD= 1/3 đáy AD)
S BGD = 1/3 SAGD (Chung chiều cao hạ từ đỉnh G, đáy BD = 1/3 đáy AD)
Mà: S ACD = S AGD + S AGC
S BCD = S BGD + S BGC
Nên S BGC = 1/3 S AGC (1)
Mặt khác S EGC = 1/3 SAGC (2) (Chung chiều cao hạ từ G xuống cạnh AC, EC= 1/3 AC)
Từ (1)và (2) suy ra S BGC = S EGC
S BEC = 1/3 S ABC = 270 : 3 = 90 (cm2)
S BEC = BGC + S EGC nên S BGC = 90 : 2 = 45 (cm2)