Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABD vuông tại D và ΔACD vuông tại D có
AB=AC(ΔABC cân tại A)
AD chung
Do đó: ΔABD=ΔACD(cạnh huyền-cạnh góc vuông)
Suy ra: DB=DC(hai cạnh tương ứng)
a) Xét ΔADB vuông tại D và ΔADC vuông tại D có
AB=AC(ΔABC cân tại A)
AD chung
Do đó: ΔADB=ΔADC(cạnh huyền-cạnh góc vuông)
Suy ra: DB=DC(Hai cạnh tương ứng)
b) Ta có: ΔADB=ΔADC(cmt)
nên \(\widehat{BAD}=\widehat{CAD}\)(hai góc tương ứng)
hay \(\widehat{EAD}=\widehat{FAD}\)
Xét ΔEAD vuông tại E và ΔFAD vuông tại F có
AD chung
\(\widehat{EAD}=\widehat{FAD}\)(cmt)
Do đó: ΔEAD=ΔFAD(cạnh huyền-góc nhọn)
Suy ra: AE=AF(Hai cạnh tương ứng)
Xét ΔAEF có AE=AF(cmt)
nên ΔAEF cân tại A(Định nghĩa tam giác cân)
a, Xét tam giác ADB và tam giác ADC có: AB=AC( giả thiết ) ; BD=DC(giả thiết); cạnh AD chung \(\rightarrow\) Tam giác ADB= tam giác ADC b,Tam giác ADB=tam giác ADC(theo câu a) nên góc DAB=góc DAC(2 góc tương ứng) \(\rightarrow\) AD là tia phân giác của góc BAC c, Vì tam giác ADB=ADC(câu a) nên góc ADB bằng góc ADC( 2 góc tương ứng) (1) Ta có góc ADB+góc ADC=180 độ (kề bù) (2) Từ (1) và (2) \(\rightarrow\) góc ADB=90 độ \(\Rightarrow\) AD vuông góc voi BC
a: Xét ΔADB và ΔADC có
AB=AC
AD chung
BD=CD
Do đó: ΔADB=ΔADC
b: Ta có: ΔABD=ΔACD
=>\(\widehat{BAD}=\widehat{CAD}\)
=>AD là phân giác của góc BAC
c: Xét ΔADM vuông tại M và ΔADN vuông tại N có
AD chung
\(\widehat{DAM}=\widehat{DAN}\)
Do đó: ΔADM=ΔADN
=>AM=AN
Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh: a) Tam giác ADB = ADC; b) AD là tia phân giác của góc BAC; c) AD vuông góc BC - Toán học Lớp 7 - Bài tập Toán học Lớp 7 - Giải bài tập Toán học Lớp 7 | Lazi.vn - Cộng đồng Tri thức & Giáo dục : Bạn vào đó nhé !
A B C D
a) AB = AC => tam giác ABC cân tại A
=> B = C
Xét tam giác ADB và tam giác ADC có :
AB = AC ( gt )
B = C ( cmt )
BD = CD ( gt )
=> tam giác ADB = tam giác ADC ( đpcm )
b)+c) Ta có tam giác ABC cân tại A
mà AD là trung tuyến
=> AD đồng thời là phân giác và đường cao
=> đpcm
Khỏi vẽ hình nhé!!
a/ Xét tam giác ABD và tam giác ACD có:
AB = AC (GT)
AD: cạnh chung
BD = CD (vì D là trung điểm BC)
=> tam giác ABD = tam giác ACD (c.c.c)
b/ Ta có: tam giác ABD = tam giác ACD (câu a)
=> góc ADB = góc ADC (2 góc tương ứng)
Mà góc ADB + góc ADC = 1800 (kề bù)
=> góc ADB = góc ADC = 1800 : 2 = 900
Vậy AD vuông góc với BC (đpcm)