\(\Delta ABM=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2019

Mình chỉ có hình cho 2 câu đầu thôi nhé.

c) Xét \(\Delta ABC\) có:

\(AB=AC\left(gt\right)\)

=> \(\Delta ABC\) cân tại A.

=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân).

Hay \(\widehat{EBC}=\widehat{FCB}.\)

Xét 2 \(\Delta\) \(EBC\)\(FCB\) có:

\(EB=FC\left(gt\right)\)

\(\widehat{EBC}=\widehat{FCB}\left(cmt\right)\)

Cạnh BC chung

=> \(\Delta EBC=\Delta FCB\left(c-g-c\right).\)

d) Theo câu c) ta có \(\Delta EBC=\Delta FCB.\)

=> \(CE=BF\) (2 cạnh tương ứng).

Chúc bạn học tốt!

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:   a) \(\Delta ABK=\Delta BDC\)   b)\(CD\perp BK\)và \(BE\perp CK\)    c) Ba đường thẳng AH, BE, CD đồng quyBài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:

   a) \(\Delta ABK=\Delta BDC\)

   b)\(CD\perp BK\)và \(BE\perp CK\)

    c) Ba đường thẳng AH, BE, CD đồng quy

Bài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao cho \(\widehat{ABC}=3\widehat{ABD}\),trên canh AB lấy diểm E sao cho \(\widehat{ACB}=3\widehat{ACE}\).Gọi F là giao điểm của BD và CE. I là giao điểm các đường phân giác của\(\Delta BFC\).

       a)Tính số đo \(\widehat{BFC}\)

       b)Chứng minh \(\Delta BFE=\Delta BFI\)

       c) Chứng minh IDE là tam giác đều

       d)Gọi Cx là tia đối của tia CB, M là giao điểm của FI và BC. Tia phân giác của \(\widehat{FCx}\)cắt tia BF tại K. Chứng minh MK là tia phân giác của \(\widehat{FMC}\)

      e) MK cắt CF tại điểm N. Chứng minh B, I, N thẳng hàng

0
16 tháng 12 2015

a) Xét tam giác ABM và tam giác ACM, ta có:

AB=AC(gt)

BM=CM(gt)

AM: cạnh chung

Do đó:  tam giác ABM = tam giác ACM(c.c.c)

Vậy: Góc AMB = Góc AMC

Mà góc AMB + góc AMC = 180 độ =>

Góc AMB = Góc ACM = 180 độ / 2 = 90 độ

Vậy AM vuông góc với BC

b) Xét tam giác AMD và tam giác AME, ta có:

AD=AE (gt)

Góc DAM = Góc EAM ( theo câu a, cặp góc tương ứng )

AM: cạnh chung

Do đó: Tam giác AMD = tam giác AME (c.g.c)

c) Ta thấy: Góc EDM + Góc KDM = 180 độ ( kề bù )

Vậy ba điểm D,E,K thẳng hàng

16 tháng 12 2015

=> tam giác ABC cân tại A

Xét ABM và ACM có:

AM chung

AB = AC

A1 = A2 (tam giác ABC cân tại A)

Vậy tam giác ABM = ACM

M1 = M2 ; M1 + M2 = 180 (2 góc kề bù)

=> M1 = M2 = 90

=> AM vuông góc BC 

 

22 tháng 12 2017

a b c m d 1 2 3 4 e f

Xét T/G ABC và DCM 

CÓ ; M1=M2 ( đối đỉnh) CM=BM (M là trung điểm BC) AM=MD (gt) -> ABC=DCM(CgC)

Có T/G ABC=DCM ->  Góc D=BAM(2 góc tương ứng )mà 2 góc Sole trong -> AB//DC

C) Xét T/G BFM và CEM  có CM=MB(GT) E3=F4=90 độ M4=M3 ( đối đỉnh) ->  BFM=CEM(g.c.g)

-> ME=MF ->  M là trung điểm EF 

22 tháng 12 2017

A B C M D E F

a, Xét t/g ABM và t/g DCM có:

AM=DM(gt)

BM=CM(gt)

góc AMB=góc DMC (đối đỉnh)

=>t/g ABM=t/g DCM (c.g.c)

b, Vì t/g ABM=t/g DCM (cmt) => góc ABM = góc DCM (2 góc t/ứ)

Mà 2 góc này là cặp góc so le trong

=> AB//DC

c, Xét t/g BEM và t/g CFM có:

góc BEM = góc CFM = 90 độ (gt)

BM=CN(gt)

góc BME = góc CMF (đối đỉnh)

=>t/g BEM = t/g CFM (cạnh huyền - góc nhọn)

=>EM=FM (2 cạnh t/ứ)

=>M là trung điểm của EF

12 tháng 12 2018

Hình thì chú tự vẽ nhá 

d) Xét tam giác AEF có AE = AF ( chứng minh phần c ) nên tam giác AEF cân tại A

Nên \(\widehat{AEF}=\widehat{AFE}=\frac{180^o-\widehat{EAF}}{2}\)

Xét \(\Delta BNE\)và \(\Delta CIF\)có :

\(\widehat{BNE}=\widehat{CIF}=90^o;BE=CF;\widehat{AEF}=\widehat{AFE}\)

Khi đó \(\Delta BNE=\Delta CIF\)( cạnh huyền góc nhọn )

Nên \(NE=IF\)(hai cạnh tương ứng )

Ta có \(AN+NE=AE;AI+IF=AF\)mà \(AE=AF;NE=IF\)nên \(AN=AI\)

Xét tam giác ANI có AN = AI nên tam giác ANI cân tại A nên \(\widehat{ANI}=\widehat{AIN}=\frac{180^o-\widehat{NAI}}{2}\)

Khi đó \(\widehat{ANI}=\widehat{AEF}=\frac{180^o-\widehat{EAF}}{2}\)mà hai góc này nằm ở vị trí đồng vị của NI và EF cắt bởi AE nên theo dấu hiệu nhận biết hai đường thẳng song song ta có \(NI//EF\)

Vậy....

13 tháng 12 2018

A E F B C M N I

a) Xét ha tam giác ABM và ACM có:

\(\hept{\begin{cases}BM=MC\left(gt\right)\\AM:chung\\AB=AC\left(gt\right)\end{cases}\Rightarrow\Delta ABM=\Delta ACM\left(c-c-c\right)}\)

b) Ta có: AB = AC => tam giác ABC cân tại A

   Tam giác cân ABC có AM là đường trung tuyến

    Nên cũng đồng thời là đường cao

Suy ra: AM vuông góc với BC

c) Ta có: Tam giác ABC cân tại A => \(\widehat{ABM}=\widehat{ACM}\)

    Mà \(\widehat{ABM}+\widehat{ABE}=180^0\)

           \(\widehat{ACM}+\widehat{ACF}=180^0\)

Suy ra: \(\widehat{ABE}=\widehat{ACF}\)

Xét hai tam giác ABE và ACF có:

   \(\hept{\begin{cases}BE=CF\\\widehat{ABE}=\widehat{ACF}\\AB=AC\end{cases}\Rightarrow\Delta ABE}=\Delta ACF\left(c-g-c\right)\)

d) Ta có: AE = AF (cmt)

=> Tam giác AEF cân tại A

Suy ra: \(\widehat{AFE}=\widehat{AEF}=\frac{180^0-\widehat{EAF}}{2}\) (1)

Xét hai tam giác vuông BNE và CIF: \(\hept{\begin{cases}BE=CF\\\widehat{E}=\widehat{F}\end{cases}\Rightarrow\Delta BNE=\Delta CIF}\) (cạnh huyền -góc nhọn)

                                                                                => NE = IF

Ta có: AE = AF (Gt); NE = IF (cmt)

=> AE - NE = AF - IF

=> AN         =   AI

=> Tam giác ANI cân tại I

Suy ra: \(\widehat{ANI}=\widehat{AIN}=\frac{180^0-\widehat{EAF}}{2}\) (2)

Từ (1) và (2) suy ra: \(\widehat{AIN}=\widehat{AFE}\)

Mà hai góc này ở vị trí đồng vị

Nên NI // EF

       

         

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0