K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAPH có

AM vừa là đường cao, vừa là trung tuyến

=>ΔAPH cân tại A

=>AP=AH

=>AM là phân giác của góc PAH

Xét ΔAEP và ΔAEH có

AP=AH

góc EAP=góc EAH

AE chung

=>ΔAEP=ΔAEH

b: Xét ΔAHQ có

AN vừa là đường cao, vừa là trung tuyến

=>ΔAHQ cân tại A

=>AH=AQ=AP

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

27 tháng 4 2019

đề bài thiếu bn ơi, ko cho H là j mà câu a) lại bắt c/m góc ADH=góc ADB à

13 tháng 3 2018

A D B C H M E

a/ Xét 2 tam giác MDC và MAB có MA=MD (gt), MB=MC (gt), góc DMC=góc AMB (đối đỉnh)

=> tam giác MDC = tam giác MAB

=> Góc CBA=góc BCD (Góc tương ứng)

Xét \(\Delta ABC\)\(\widehat{CBA}+\widehat{ACB}=90^0\)(Tính chất Tam giác vuông)

=> \(\widehat{BCD}+\widehat{ACB}=90^0=\widehat{ACD}\) => \(CD\perp AC\)

b/ Xét 2 tam giác vuông CHE và CHA có: CH (chung); HE=HA (gt); Tam giác vuông tại H

=> \(\Delta CHE=\Delta CHA\)=> CA=CE (2 cạnh tương ứng) => \(\Delta CAE\)cân tại C

15 tháng 1 2020

H M N D E A B C 1 1 1 2

Ta có : HN vuông góc với AB (gt)

            AB vuông góc với AC (gt)

Do đó HN//AC ( quan hệ giữa tính vuông góc với song song )

=> Góc H1 = góc A2   ( 2 góc so le trong )

Xét tam giác HAN vuông tại N và tam giác HAM vuông tại M có:

HA là cạnh chung

Góc H1 = góc A2  ( cmt )

Do đó tam giác HAN = tam giác AHM ( cạnh huyền,góc nhọn )

=> AN=HM ( 2 cạnh tương ứng )

Mà HM= ME (gt)

=> AN = ME

Xét tam giác NAM vuông tại A và tam AME vuông tại M có :

AM là cạnh chung

AN=ME (cmt)

Do đó tam giác NAM = EMA ( 2 cạnh góc vuông )

=> Góc M1 = góc A1  ( 2 góc tương ứng )

Mà hai góc này ở vị trị so le trong do AM cắt MN, DE

Do đó MN//DE ( dấu hiệu nhận biết hai đường thẳng song song )

Xong ! 

15 tháng 1 2020

Xét tứ giác ANHM có \(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^o\)

\(\Rightarrow\)ANHM là hình chữ nhật \(\Rightarrow NH=AM\)

Xét \(\Delta NHM\)và \(\Delta AME\)có: 

+) \(NH=AM\)

+) \(\widehat{NHM}=\widehat{AME}=90^o\)

+) \(MH=ME\)

\(\Rightarrow\Delta NHM=\Delta AME\left(c-g-c\right)\)\(\Rightarrow\widehat{NMH}=\widehat{MEA}\)

mà 2 góc này ở vị trí so le trong \(\Rightarrow NM//AE\)(1)

Ta có: AB là đường trung trực của HD \(\Rightarrow\Delta AHD\)cân tại A

mà AN là đường cao \(\Rightarrow\)AN là phân giác \(\widehat{DAH}\)

Tương tự ta có: AM là phân giác \(\widehat{HAE}\)

mà \(AN\perp AM\)\(\Rightarrow\)\(\widehat{DAH}+\widehat{HAE}=\widehat{DAE}=180^o\)( Phân giác của 2 góc kề bù vuông góc với nhau )

\(\Rightarrow\)D,A,E thẳng hàng (2)

Từ (1) và (2) \(\Rightarrow MN//DE\)

14 tháng 5 2015

a) Tam giác ADI và AHI có

AI cạnh chung

AID=AIH=90 độ

ID=IH(gt)

vậy tam giác ADI=AHI(c.g.c)

b) xét tam giác BID và BIH có

BI cạnh chung

BID=BIH=90 độ

ID=IH(gt)

vậy tam giác BID=BIH(c.g.c)

=>DBI=HBI(góc tuognư ứng

xét tam giác ABD và ABH có 

DAB=HAB( vì tam giác AID=AIH)

AB cạnh chung

DBA=HBA(cmt)

vậy tam giác ABD=ABH(g.c.g)

=> ADB=AHB=90 độ

hay AD vuông góc với BD.

c)BC=HB+HC=9+16=25(cm)

Áp dụng định lí pi-ta-go vào tam giác ABH, ta có

   \(AB^2=AH^2+HB^2=AH^2+9^2=AH^2+81\)

Áp dụng định lí pi-ta-go vào tam giác ACH, ta có

\(AC^2=AH^2+HC^2=AH^2+16^2=AH^2+256\)

Áp dụng định lí pi-ta-go vào tam giác ACH, ta có

\(BC^2=AB^2+AC^2\)

hay \(25^2=AH^2+81+AH^2+256\)

      \(625=2AH^2+337\)

      \(2AH^2=625-337=288\)

     \(AH^2=\frac{288}{2}=144\)

     \(AH=\sqrt{144}=12\left(cm\right)\).

 

24 tháng 4 2019

UẢ sao ko có câu D

6 tháng 2 2016

vẽ hình nha bạn

ghi từng bài thui