Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC cân tại A có AD là đường phân giác ứng với cạnh đáy BC
nên AD là đường trung trực ứng với cạnh BC
b: Xét ΔAMD vuông tại M và ΔAND vuông tại N có
AD chung
\(\widehat{MAD}=\widehat{NAD}\)
Do đó: ΔAMD=ΔAND
Suy ra: AM=AN
Xét ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Do đó: MN//BC
A B C D
Cm: a) Xét t/giác ABD và t/giác ACD
có: AB = AC (Gt)
\(\widehat{BAD}=\widehat{CAD}\) (gt)
AD : chung
=> t/giác ABD = t/giác ACD (c.g.c)
b) ta có: t/giác ABD = t/giác ACD (cmt)
=> \(\widehat{B}=\widehat{C}\) (2 góc t/ứng)
\(a,\left\{{}\begin{matrix}AB=AC\\\widehat{BAD}=\widehat{CAD}\\AD\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\\ b,\Delta ABD=\Delta ACD\Rightarrow\widehat{B}=\widehat{C}\)
Cm: a) Xét t/giác ABD và t/giác ACD
có: AB = AC (Gt)
ˆBAD=ˆCADBAD^=CAD^ (gt)
AD : chung
=> t/giác ABD = t/giác ACD (c.g.c)
b) ta có: t/giác ABD = t/giác ACD (cmt)
=> ˆB=ˆCB^=C^ (2 góc t/ứng)
thế nha
A B C D H K 1 2
a) Xét \(\Delta ADB\)và \(\Delta ADC\)có :
AD ( cạnh chung )
\(\widehat{A_1}=\widehat{A_2}\)( vì AD là tia phân giác )
AB = AC ( gt )
suy ra \(\Delta ADB\)= \(\Delta ADC\)( c.g.c )
b) \(\Rightarrow\widehat{ADB}=\widehat{ADC}\)( 2 góc tương ứng ) ( theo câu a )
Mà \(\widehat{ADB}+\widehat{ADC}=180^o\)
\(\Rightarrow\widehat{ADB}=\widehat{ADC}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AD\perp BC\)
c) vì \(\Delta ADB\)= \(\Delta ADC\)( theo câu a )
\(\Rightarrow BD=CD\)( 2 cạnh tương ứng )
\(\Rightarrow\widehat{ABD}=\widehat{ACD}\)( 2 góc tương ứng )
Mà \(\widehat{ABD}+\widehat{BDH}=90^o\); \(\widehat{ACD}+\widehat{CDK}=90^o\)
\(\Rightarrow\widehat{BDH}=\widehat{CDK}\)
Xét \(\Delta HBD\)và \(\Delta KCD\)có :
\(\widehat{BDH}=\widehat{CDK}\)( cmt )
BD = CD ( cmt )
\(\widehat{ABD}=\widehat{ACD}\)( cmt )
suy ra \(\Delta HBD\)= \(\Delta KCD\)( g.c.g )
\(\Rightarrow DH=DK\)( 2 cạnh tương ứng )
a) xét tam giác ABD và tam giác ADC
Có AD là cạnh chung
góc BAD= gócDAC
AB=AC
Vậy tam giác ADB= tam giác ADC(c.g.c)
Suy ra DB=DC(2 cạnh tương ứng)
b)Vì tam giác ADB=tam giác ADC
Nên góc ADB=góc ADC(2 góctương ứng)
Ta có góc ADB + góc ADC = 180 độ
mà góc adb = góc adc
nên 2 góc adb=2 góc adc= 180 độ
hay adb=adc=180/2=90 độ
vậy ad vuông góc bc tại d
A B C D
Vì AD là phân giác của góc BAC nên \(BAD=CAD=\frac{BAC}{2}\)
Xét Δ CAD và Δ BAD có:
AC = AB (gt)
CAD = BAD (cmt)
AD là cạnh chung
Do đó, Δ CAD = Δ BAD (c.g.c)
=> ADC = ADB (2 góc tương ứng)
Mà ADC + ADB = 180o (kề bù) nên ADC = ADB = 90o
=> \(AD\perp BC\left(đpcm\right)\)