Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình, viết GT,KL
a) Ta có tam giác ABC có AB=AC
=> t/g ABC cân tại A
=> ^ABC=^ACB mà M thuộc BC
=> ^ABM=^ACM
Xét t/g ABM và ACM có:
AB=AC (gt)
^ABM=^ACM (cmt)
MB=MC ( M là trung điểm BC)
=> t/g ABM=t/g ACM (c.g.c)
b) Vì t/g ABM =t/gACM (câu a)
=> ^AMB=^AMC ( 2 góc tương ứng )
mà ^AMB+^AMC=180' ( 2 góc kề bù)
=> ^AMB=^AMC = 90'
=> AM vuông góc BC
giờ mình giải cho bạn luôn đc ko, bạn có cần nữa ko để mình biết mình giải cho
- xét tam giác BAI và DAI
ai cạnh chung
bai= dai ( ai phân giác BAC)
ab=ad ( gt )
=> tam giác bai= dai ( C.G.C)
=>bi= di ( C.C.T.Ư )
B) Tam giác bai = dai
=>iba = ida ( c.g.t.ư)
ta có :
góc abi+ ibe = 180 ( 2 GÓC KỀ BÙ )
ADI+ IDC= 180 ( 2 GÓC KỀ BÙ )
Mà ABI = adi ( CMT)
= > ibe = idc
xét tam giác ibe và tam giác idc
ib= id (GT)
IBE= IDC (CMT)
BIE= DIC ( 2 góc đối đỉnh)
=> Tam giác ibe= idc ( g.c.g)
C) ta có bde= dec ( 2 góc sole trong)
xét tam giác bde và dec
be= dc ( TAM GIÁC BEI= DIC)
de chung
bde = dec (cmt)
=> tam giác bde = ced (c.g.c)
=> deb= cde (c.g,t.ư )
MÀ góc deb và cde là 2 góc ở vị trí sole trong nên
=> bd song song ec
TỰ VẼ HÌNH
NHỚ K CHO MÌNH NHA MÌNH CAMON, CÓ GÌ CHƯA HIỂU THÌ VÀO NHẮN TIN
A B C D E H F
Tam giác ABC có : góc ABC > góc ACB (gt)
=> AC > AB (đl)
AD _|_ BC (gt)
D thuộc BC
=> BD < DC
H thuộc AD
=> HB < HC
b, AD; BE là đường cao
ADcắt BE tại H
=> CH là đường cao (đl)
=> CH _|_ AB (đn)
HF _|_ AB (gt)
=> C; H; F thẳng hàng
c.
\(AB>AD;AC>AD\left(ch>cgv\right)\)
\(\Rightarrow AB+AC>2AD\left(đpcm\right)\)
d
Kẻ \(HN//AC;HM//AB\)
Theo tính chất cặp đoạn chắn,ta có:\(HM=AN\)
Áp dụng bất đẳng thức tam giác ta có:
\(HA< AM+HM=AM+AN\left(1\right)\)
Do \(BH\perp AC;HN//AC\Rightarrow NH\perp HN\)
Xét \(\Delta BHN\) ta có:\(BH< BN\left(2\right)\)
Tương tự trong tam giác CHM có \(CH< CM\left(3\right)\)
Tiừ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow HA+HB+HC< AM+AN+BN+CM=AB+AC\)
Tương tự,ta có:
\(HA+HB+HC< AB+BC\)
\(HA+HB+HC< BC+AC\)
\(\Rightarrow3\left(HA+HB+HC\right)< 2\left(AB+BC+CA\right)\)
\(\Rightarrow HA+HB+HC< \frac{2}{3}\left(AB+BC+CA\right)\)
hú idol,vô kb với tui đi