Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
A C B D E
a. Tam giác ABC cân tại A
=> Góc ABC = góc ACB
=> BD là tia phân giác của góc ABC
\(\Rightarrow\widehat{BDC}=\frac{\widehat{ABC}}{2}\)
CE là tia phân giác của góc ACB
\(\Rightarrow\widehat{BCE}=\frac{\widehat{ACB}}{2}\)
=> Góc BDC = góc BCE
Xét tam giác BCE và tam giác CBD:
BC cạnh chung
Góc CBE = góc BCD
Góc BCE = góc CBD
=> Tam giác BCE = tam giác CBD (g.c.g)
=> BD = CE
b. Có: \(\frac{BE}{AB}=\frac{DC}{AC}\Rightarrow ED//BC\)
c. Có: \(\frac{AD}{DC}=\frac{AB}{BC}\)
\(\Rightarrow\frac{AD}{DC}=\frac{6}{4}=\frac{3}{2}\)
\(\Rightarrow AD=\frac{3}{2}DC\)
Mà AD + DC = AC
\(\frac{3}{2}DC+DC=6\)
\(\Rightarrow DC=2,4cm\)
\(\Rightarrow AD=3,6cm\)
Có \(\frac{ED}{BC}=\frac{AD}{AC}\)
\(\Rightarrow ED=\frac{BC.AD}{AC}=\frac{4.3,6}{6}=2,4cm\)
A B C D E 6 H
a) BC = \(\sqrt{AB^2+AC^2}\)= \(\sqrt{6^2+8^2}\)= \(\sqrt{100}\)= 10 (theo định lí Pythagoras)
\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)= \(\frac{CD}{BC}\)= \(\frac{AD}{DC}\)= \(\frac{AB}{BC}\)= \(\frac{6}{10}\)= \(\frac{3}{5}\).
b) Ta có : \(\widehat{ABE}\)= \(\widehat{EBC}\)(BD là phân giác)
=> \(\Delta ABD\)~ \(\Delta EBC\)(gg)
=> \(\frac{BD}{BC}\)= \(\frac{AD}{EC}\)<=> BD.EC = AD.BC (đpcm).
c) Ta có : \(\Delta CHE\)~ \(\Delta CEB\)( 2 tam giác vuông có chung góc C )
=> \(\frac{CH}{CE}\)= \(\frac{CE}{CB}\)<=> CH.CB = CE2 (1)
\(\Delta CDE\)~ \(\Delta BDA\)(gg (2 góc đối đỉnh))
\(\Delta BDA~\Delta BCE\) (câu b))
=> \(\Delta CDE~\Delta BCE\)
=> \(\frac{CE}{BE}\)= \(\frac{DE}{CE}\)<=> BE.DE = CE2 (2)
Từ (1) và (2) => CH.CB = ED.EB (đpcm).
A B C E D
- Vì tam giác \(\Delta ABC\)cân tại A Nên : \(\widehat{ABC}=\widehat{ACB}\)mà BD,CE lần lượt là đường phân giác của hai góc \(\widehat{ABD};\widehat{ACD}\Rightarrow\widehat{ABD}=\widehat{ACE}\)\(\Rightarrow\hept{\begin{cases}\widehat{BAC}chung\\AB=AC\\\widehat{ABD}=\widehat{ACE}\end{cases}}\Rightarrow\Delta ABD=\Delta ACE\Rightarrow BD=CE\)
- \(\Delta ABD=\Delta ACE\Rightarrow AE=AD\Rightarrow\frac{AE}{AB}=\frac{AD}{AC}\)\(\Rightarrow ED||BC\)
- Gọi độ dài của AD là \(x\left(cm\right)\)\(\Rightarrow DC=6-x\left(cm\right)\)vì BD là phân giác của \(\widehat{ABD}\)nên có tỉ số : \(\frac{AD}{DC}=\frac{AB}{BC}\Leftrightarrow\frac{x}{6-x}=\frac{6}{4}\Leftrightarrow10x=36\Leftrightarrow x=3,6\left(cm\right)\)\(\Rightarrow DC=6-3,6=2,4\left(cm\right)\)mặt khác từ tỉ số : \(\frac{ED}{BC}=\frac{AD}{AC}\Rightarrow ED=\frac{AD.BC}{AC}=\frac{3,6.4}{6}=2,4\left(cm\right)\)
c) Xét tam giác AHD vuông tại H có AD là cạnh huyền, AH là cạnh góc vuông \(\Rightarrow\) AH < AD (1)
Xét tam giác ADC có góc ADC là góc ngoài tại D của tam giác AHD
\(\Rightarrow\) góc ADC = góc AHD + góc HAD = 90 + góc HAD > 90
\(\Rightarrow\) góc ADC là góc tù
\(\Rightarrow\) AC > AD (2)
Từ (1) và (2) \(\Rightarrow\) D nằm giữa C và H (*)
Lại có H \(\in\) BC \(\Rightarrow\) H nằm giữa B và C (**)
Từ (*) và (**) \(\Rightarrow\) H luôn nằm giữa B và D
Bạn biết giải ý B ko giúp mk vs . mk cũng đang làm bài này đây
a b c d e 1 1 6 6 4
câu a
tam giác abc có ab = ac
=> tam giác abc cân tại a
=> góc b = góc c
=> góc b1 = góc c1 (phân giác 2 góc = nhau)
tam giácc bcd và tam giác cbe có
chung bc
góc b = góc c
góc b1 = góc c1
=> tam giác bcd = tam giác cbe (gcg)
=> bd = ce
câu b
câu a
\(\)=> cd = be
có ab = ac
\(=>\dfrac{cd}{ac}=\dfrac{be}{ab}\\ \)
=> ed // bc (ta lét đảo)
câu c
tam giác abc có bd là phân giác góc b
\(=>\dfrac{ab}{bc}=\dfrac{ad}{cd}\\ =>\dfrac{ab}{bc+ab}=\dfrac{ad}{ad+cd}\\ =>\dfrac{ab}{bc+ab}=\dfrac{ad}{ac}\\ =>\dfrac{6}{6+4}=\dfrac{ad}{6}\\ =>\dfrac{6}{10}=\dfrac{ad}{6}\\ =>ad=3,6\left(cm\right)\)
có ad +cd = ac
=> 3,6 + cd = 6
=> cd = 2,4 (cm)
có ed // bc
\(=>\dfrac{ed}{bc}=\dfrac{ad}{ac}\\ =>\dfrac{ed}{4}=\dfrac{3,6}{6}\\ =>ed=2,4\left(cm\right)\)
thế thoi, chúc may mắn :)