K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2017

a) Xét ∆BEA và ∆CDA, ta có:

BA = CA (gt)

\(\widehat{A}\)chung

AE = AD (gt)

Suy ra: ∆BEA = ∆CDA (c.g.c)

Vậy BE = CD (hai cạnh tương ứng)

b) ∆BEA = ∆CDA (chứng minh trên)

\(\widehat{\text{B1}}=\widehat{\text{C1}}\);\(\widehat{\text{E1}}=\widehat{\text{D1}}\) (hai góc tương ứng)

\(\widehat{\text{E1}}+\widehat{\text{E2}}\)=180o (hai góc kề bù)

\(\widehat{\text{D1}}+\widehat{\text{D2}}\)=180o (hai góc kề bù)

Suy ra: \(\widehat{\text{E2}}=\widehat{\text{D2}}\)

AB = AC (gt)

AE + EC = AD + DB mà AE = AD (gt) => EC = DB

Xét ∆ODB và ∆OCE, ta có:

\(\widehat{\text{E2}}=\widehat{\text{D2}}\) (chứng minh trên)

DB = EC (chứng minh trên)

\(\widehat{\text{B1}}=\widehat{\text{C1}}\)(chứng minh trên)

Suy ra: ∆ODB = ∆OEC (g.c.g)

23 tháng 12 2021

Chuẩn quá chời!

 

15 tháng 11 2016

AB = AC (gt)

=> Tam giác ABC cân tại A

Xét tam giác EAB và tam giác DAC có:

EA = DA (gt)

A chung

AB = AC (gt)

=> Tam giác EAB = Tam giác DAC (c.g.c)

=> EB = DC (2 cạnh tương ứng)

EBA = DCA (2 góc tương ứng)

mà ABC = ACB (tam giác ABC cân tại A)

=> ABC - EBA = ACB - DCA

hay EBC = DCB

=> Tam giác OBC cân tại O

Xét tam giác BOD và tam giác COE có:

DBO = ECO (tam giác EAB = tam giác DAC)

BO = CO (tam giác OBC cân tại O)

BOD = COE (2 góc đối đỉnh)

=> Tam giác BOD = Tam giác COE (c.g.c)

29 tháng 11 2019

A E D B C

\(a)\)Xét \(\Delta ABE\) và \(\Delta ACD\) có:

\(AB=AC\left(gt\right)\)

\(\widehat{A}:\) chung

\(AD=AE\left(gt\right)\)

\(\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\)

\(\Rightarrow BE=CD\)(2 cạnh tương ứng)

\(b)AB=DA+DB\)

\(AC=EA+EC\)

Mà \(AB=AC;AD=AE\)

\(\Rightarrow DB=EC\)

Xét \(\Delta BOD\) và \(\Delta COE\) có:

\(\widehat{BOD}=\widehat{COE}\left(đ^2\right)\)

\(DB=EC\left(cmt\right)\)

\(\widehat{DBE}=\widehat{ECD}\left(\Delta ABE=\Delta ACD\right)\)

\(\Rightarrow\Delta BOD=\Delta COE\left(g.c.g\right)\)

19 tháng 8 2016

 a/ Xét 2 tam giác BDE và CED có 
BD=EC 
DE chung 
Góc BDE = góc DEC do chúng lần lượt bù với 2 góc bằng nhau là ADE và AED 
=> dpcm (c.g.c) 
b/ Có góc DKB bằng góc EKC do đối đỉnh 
KD=KE 
góc BDK=góc CEK 

Vậy tam giác BOD = tam giác COE

23 tháng 10 2016

banj có chắc ko zay

19 tháng 8 2016

A B C D E O

a/ Xét tam giác ABE và tam giác ACD có :

AD = AE , góc A là góc chung của hai tam giác , AB = AC

=> tam giác ABE = tam giác ACD => CD = BE

b/ Dễ dàng chứng minh đc tam giác BED = tam giác CDE (c.c.c)

=> góc CED = góc CDE => tam giác ODE cân tại O => OD = OE (1)

Lại có BE = CD => OB = OC (2) ; góc BOD = góc EOC (đối đỉnh) (3)

Từ (1) , (2) , (3) suy ra tam giác BOD = tam giác OCE (c.g.c)

19 tháng 8 2016

a) Xét tam giác ADE và ADC

AE = AC 

góc a chung 

AE = AD ( theo gt) 

Tam giác ABE= ADC 

nên BE = CD ( đpcm)

tick 

nhabn

19 tháng 8 2016

O B C A D E

a) Xét tam giác ABE và tam giác ACD:

có+AB=AC(gt)

     +A: góc chung

     +AD=AE(gt)

Vậy tam giác ABE=tam giác ACD(c.g.c)

=> BE=CD( 2 cạnh tương ứng )

b)

  • Vì tam giác ABE=tam giác ACD(cmt)

nên: ABD=ACE( 2 góc tương ứng )

  • Xét tam giác BOD và tam giác COE:

có:+ góc BOD=COE( đối đỉnh)

      +AB=AC( tam giác ABC cân vì có 2 cạnh bên bằng nhau) mà AD=AE(gt)=>BD=CE

       +góc ABE=ACD(cmt)

Vậy tam giác BOD=COE(g.c.g)

hihi ^...^ vui^_^

 

 

 

a: Xét ΔAEB và ΔADC có 

AE=AD

\(\widehat{DAC}\) chung

AB=AC

Do đó: ΔAEB=ΔADC

Suy ra: BE=CF

b: Ta có: AD+DB=AB

AE+EC=AC

mà AD=AE

và AB=AC

nên DB=EC

Xét ΔDBC và ΔECB có 

DB=EC

\(\widehat{DBC}=\widehat{ECB}\)

BC chung

Do đó: ΔDBC=ΔECB

Suy ra: \(\widehat{ODB}=\widehat{OEC}\)

Xét ΔODB và ΔOEC có 

\(\widehat{ODB}=\widehat{OEC}\)

BD=EC

\(\widehat{DBO}=\widehat{ECO}\)

Do đó: ΔODB=ΔOEC

13 tháng 1 2017

A B C D E O

a) Vì \(\Delta\)ABC có AB = AC nên \(\Delta\)ABC cân tại A

=> \(\widehat{ABC}\) = \(\widehat{ACB}\) (góc đáy)

hay \(\widehat{DBC}\) = \(\widehat{ECB}\)

Ta có: AD + DB = AB

AE + EC = AC

mà AB = AC; AD = AE nên DB = EC

Xét \(\Delta\)BDC và \(\Delta\)CEB có:

BD = CE (chứng minh trên)

\(\widehat{DBC}\) = \(\widehat{ECB}\) (c/m trên)

BC chung

=> \(\Delta\)BDC = \(\Delta\)CEB (c.g.c)

=> CD = BE (2 cạnh tương ứng)

b) Do \(\Delta\)BDC = \(\Delta\)CEB (câu a)

=> \(\widehat{BDC}\) = \(\widehat{CEB}\) (2 góc tương ứng)

hay \(\widehat{BDO}\) = \(\widehat{CEO}\)

\(\widehat{DCB}\) = \(\widehat{EBC}\) (2 góc tương ứng)
Lại có: \(\widehat{DBO}\) + \(\widehat{EBC}\) = \(\widehat{ABC}\)

\(\widehat{ECO}\) + \(\widehat{DCB}\) = \(\widehat{ACB}\)

\(\widehat{EBC}\) = \(\widehat{DCB}\); \(\widehat{ABC}\) = \(\widehat{ACB}\)

=> \(\widehat{DBO}\) = \(\widehat{ECO}\)

Xét \(\Delta\)BOD và \(\Delta\)COE có:

\(\widehat{DBO}\) = \(\widehat{ECO}\) (c/m trên)

BD = CE (c/m câu a)

\(\widehat{BDO}\) = \(\widehat{CEO}\) (c/m trên)

=> \(\Delta\)BOD = \(\Delta\)COE (g.c.g)

17 tháng 12 2021

\(a,\left\{{}\begin{matrix}AB=AC\\AD=AE\\\widehat{BAC}\text{ chung}\end{matrix}\right.\Rightarrow\Delta AEB=\Delta ADC\left(c.g.c\right)\\ \Rightarrow BE=CD\\ b,\Delta AEB=\Delta ADC\\ \Rightarrow\widehat{ABE}=\widehat{ACD};\widehat{AEB}=\widehat{ADC}\\ \Rightarrow180^0-\widehat{AEB}=180^0-\widehat{ADC}\\ \Rightarrow\widehat{BDO}=\widehat{CEO}\\ \left\{{}\begin{matrix}\widehat{ABE}=\widehat{ACD}\\\widehat{BDO}=\widehat{CEO}\\BE=CD\end{matrix}\right.\Rightarrow\Delta BOD=\Delta COE\left(g.c.g\right)\)