Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABI vuông tại I và ΔACI vuông tại I có
AI chung
BI=CI
Do đó: ΔABI=ΔACI
b: Ta có: ΔABI=ΔACI
nên AB=AC
hay ΔABC cân tại A
c: Xét tứ giác ABDC có
I là trung điểm của BC
I là trung điểm của AD
Do đó:ABDC là hình bình hành
Suy ra: AB//CD
A B C K E M N
Bài làm
~ Mik nghĩ pk là tia đối của KC mới chứng minh được, Và câu b mik nghĩ đề không đúng đâu, nhìn hình mik vẽ thì chắc bbạn cũnng hiểu. ~
Xét tam giác AKM và tam giác BKC có:
AK = BK (K trung điểm AB)
\(\widehat{AKM}=\widehat{BKC}\)( hai góc đối )
MK = KC ( gt )
=> Tam giác AKM = tam giác BKC ( c.g.c )
=> AM = BC (1)
Xét tam giác AEN và tam giác CEB có:
AE = EC ( E trung điểm AC )
\(\widehat{AEN}=\widehat{CEB}\)( hai góc đối )
EN = EB ( gt )
=> Tam giác AEN = tam giác CEB ( c.g.c )
=> AN = BC (2)
Từ (1) và (2) => AM = AN ( đpcm )
b) ~ Mik nghĩ là chứng minh AM // BC và AN // BC vì theo như hình mik vẽ thì thấy AM và AN cùng // BC. nếu k phải thì nói lại cho mik để mik làm lại cho ~
Vì tam giác AKM = tam giác BKC ( cmt )
=> \(\widehat{AMK}=\widehat{KCB}\)( hai góc tương ứng )
Mà hai góc này vị trí so le trong
=> AM // BC (3)
Vì tam giác AEN = tam giác CEB ( cmt )
=> \(\widehat{ANE}=\widehat{EBC}\)( hai góc tương ứng )
Mà hai góc này ở vị trí so le trong.
=> AN // BC. (4)
c) Từ (3) và (4) => A, M, N thẳng hàng ( Theo tiên đờ Ơ-clit ) ( đpcm )
Xét ΔABC có
AI,CK là các đường trung tuyến
AI cắt CK tại D
Do đó: D là trọng tâm của ΔABC
Xét ΔABC có
CK là đường trung tuyến
D là trọng tâm của ΔABC
Do đó: \(CD=\dfrac{2}{3}CK\)
Ta có: CD+DK=CK
=>\(DK=CK-\dfrac{2}{3}CK=\dfrac{1}{3}CK\)
=>CD=2KD