Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M a, Vì ABC cân => AB = AC
=> góc B = góc C
mà M là tđ BC => BM = MC
Xét tam giác ABM và tam giác ACM có : AB = AC
góc B = góc C
BM = MC
=> tam giác ABM = tam giác ACM
b.Xét tam giác HBM và tam giác KCM có : BH = CK
góc B = góc C
BM = CM
=> tam giác HBM = tam giác KCM
c.
A B C M H K I
a)xet \(\Delta\)ABM và \(\Delta\)ACM có:
AB=AC(gt)
AM là cạnh chung
BM=CM(M là trung điểm BC)
nên \(\Delta\)ABM=\(\Delta\)ACM
b)ta có :AB=AC(gt)
nên \(\Delta\)ABC cân tại A
suy ra góc ABC=góc ACB
xét \(\Delta\)HMB và \(\Delta\)KMC có:
góc ABC=góc ACB
BH=CK(gt)
BM=CM(M là trung điểm BC)
nên \(\Delta\)HBM=\(\Delta\)KCM
c)ta có: BH=CK(gt)
mà AB=AC(gt)
nên AH=AK
suy ra \(\Delta\)AHK cân tại A
ta có:M là trung điểm BC(gt)
nên AM là đường trung tuyến
mà \(\Delta\)ABC cân
nên AM là đường cao,đường phân giác
nên góc BAM=góc CAM
suy ra AM là đường phân giác của \(\Delta\)AHK
mà \(\Delta\)AHK cân tại A
suy ra AM là đường cao
suy ra AM vuông với HK
mà AM vuông với BC(aM là đường cao)
suy ra HK//AM
a) Xét \(\Delta\)ADI và \(\Delta\)AHI có:
AD = AH (gt)
DI = HI (gt)
AI: cạnh chung
Do đó \(\Delta\)ADI = \(\Delta\)AHI (c.c.c)
b) Xét \(\Delta\)AHC vuông tại D và \(\Delta\)ABC vuông tại A có ^C chung nên ^HAC = ^B
\(\Delta\)ABC vuông tại A có ^C = 300 nên ^B = 600
Vậy ^HAC = 600
\(\Delta\)AHD có ^HAC = 600 và AH = AD nên \(\Delta\)AHD đều (đpcm)
c) \(\Delta\)ADI = \(\Delta\)AHI (cmt) suy ra ^DAI = ^HAI (hai góc tương ứng)
Xét \(\Delta\)ADK và \(\Delta\)AHK có:
AD = AH (gt)
^DAI = ^HAI (cmt)
AK: cạnh chung
Do đó \(\Delta\)ADK = \(\Delta\)AHK (c.g.c)
=> ^ADK = ^AHK = 900 (hai góc tương ứng)
Kết hợp với AB vuông góc AC suy ra AB//KD (đpcm)
d) Chứng minh được: \(\Delta\)AHB = \(\Delta\)EHK (c.g.c)
=> ^HAB = ^HEK => KE // AB
Khi đó qua K có hai đường thẳng KD, KE song song với AB (trái với tiên đề Ơ - cơ - lít)
Vậy KD trùng KE hay D,K,E thẳng hàng (đpcm)
Tham khảo :)) 3 chữ in hoa gần nhau nghĩa là dấu góc nha :3
a, Xét ∆ABC cân tại A có AE là đường cao
=> AE đồng thời là đường pg của ∆ABC
(T/c ∆ cân)
=> AE là pg BAC
=> BAC = 2CAE (1)
Ta có AB = AC (∆ABC cân tại A) ; AB = AD (A là trđ BD)
=> AC = AD
=>∆ACD cân tại A
Mà ∆ACD có đường cao AF (gt)
=> AF là pg CAD (t/c tam giác cân)
=> CAD = 2CAF (2)
Từ (1) và (2/
=> 2(CAE + CAF) = BAC + DAC
lại có BAC + DAC = 180° (kêt bù)
=> 2(CAE + CAF) = 180°
=> 2. EAF = 180°
=> EAF = 90°
Vậy....
b, Tứ giác AECF có EAF = AEC = AFC = 90°
=> Tứ giác AECF là hcn
=> ECF = 90°
Hay BCD = 90°
Do đó ABC + BDC = 90°
Lại có ABC + EAB= 90° (∆EAB vuông tại E)
=> BDC = EAB
Hay ADF = EAB
Xét ∆BAE vuông tại E và ∆ADF vuông tại F có
BA = AD (gt)
EAB = ADF (cmt)
=>∆BAE = ∆ADF (ch-gn)
c, Ta có ∆BAE = ∆ADF (cmt)
=> ABC = DAF (2 góc t/ứ)
Mà 2 góc này ở vị trí slt
=> BC // AF
Học tốt!
Cho tam giác ABC vuông tại A có AB=6 cm , AB =8cm . Trên BA lấy điểm D sao cho BD=BC .Từ D kẻ DE vuông góc với BC tại E (E thuộc BC)
a)Tính độ dài cạnh BC
b)Chứng minh tam giác BAC = BED
c) Gọi H là giao điểm của DE và CA. Chứng minh BH là tia phân giác của góc DBC
B A D H E C
a) Xét \(\Delta ABC\) vuông tại A có: \(BC^2=AB^2+AC^2\) (định lí Pytago)
\(\Rightarrow BC=6^2+8^2=100\)
\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)
Vậy \(BC=10cm\).
b) Xét \(\Delta BDE\) và \(\Delta ABC\) có:
\(\widehat{BAC}=\widehat{BED}=90^o\)
\(AB=AC\left(gt\right)\)
\(\widehat{B}\) chung
\(\Rightarrow\Delta ABC=\Delta EBD\) (cạnh huyền - góc nhọn) (đpcm)
c) Xét \(\Delta BCD\) có:
2 đường cao CA và DE cắt nhau tại H
\(\Rightarrow\)H là trực tâm của \(\Delta BCD\)
\(\Rightarrow BH\) là đường cao của \(\Delta BCD\) (1)
Vì AB = AC nên \(\Delta BCD\) cân tại B (2)
Từ (1), (2) \(\Rightarrow\) BH là đường cao đồng thời là tia phân giác của \(\widehat{CBD}\) (đpcm)
các bạn ơi AC=8cm nhá
MÌNH nghi bài náy sai đề mà cô hốí quá......giúp mình vs