Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Vì tam giác ABC cân tại A
=>AB=AC
Xét tam giác DAB và tam giác EAC có:
AB=AC (cmt)
\(\widehat{A}\) chung
\(\widehat{ADB}=\widehat{AEC}\) \(=90^0\)
=>Tam giác DAB=Tam giác EAC (c.h-g.n)
=>AE=AD (2 cạnh tương ứng)
=>Tam giác ADE là tam giác cân tại A
b, Xét tam giác AHE và tam giác AHD có:
AH cạnh chung
\(\widehat{AEH}=\widehat{ADH}\left(=90^0\right)\)
AE=AD (cmt)
=>Tam giác AHE=tam giác AHD (c.h-c.g.v)
=>\(\widehat{EAH}=\widehat{DAH}\)
=>AH là tia phân giác của \(\widehat{BAC}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: EC=12cm
b: Xét ΔABD vuông tại D và ΔaCE vuông tại E có
BA=CA
góc BAD chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
c: Xét ΔIBE vuông tại E và ΔICD vuông tại D có
EB=DC
góc IBE=góc ICD
Do đó: ΔIBE=ΔICD
d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta co: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có MB=MC
nen M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,M thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: \(\widehat{BAH}+\widehat{ABC}=90^0\)
\(\widehat{ACH}+\widehat{ABC}=90^0\)
Do đó: \(\widehat{BAH}=\widehat{ACH}\)