Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
gọi I là giao điểm của BD và CE
ta có E là trung điểm cua AB nên EB bằng 3 cm
xét △EBI có \(\widehat{I}\)=900 có
EB2 = EI2 + BI2 =32=9 (1)
tương tự IC2 + DI2 = 16 (2)
lấy (1) + (2) ta được
EI2+DI2+BI2+IC2=25
⇔ ED2+BC2=25
xét △ABC có E là trung điểm của AB và D là trung điểm của AC
⇒ ED là đường trung bình của tam giác
⇒ 2ED =BC
⇔ ED2=14BC2
⇒ 14BC2+BC2=25
⇔ 54BC2=25
⇔ BC2=20BC2=20
⇔ BC=√20
Ta có: \(S_{AHC}=\frac{AH.AC}{2}=96\left(cm^2\right)\Rightarrow AH.AC=192cm\)(1)
\(S_{ABH}=\frac{AH.BH}{2}=54\left(cm^2\right)\Rightarrow AH.BH=108cm\)(2)
Từ (1) và (2) \(\Rightarrow AH.BH.AH.HC=20736\)
Mà: AH2=BH.CH
=> AH2.AH2=BH.CH.AH2
<=> AH4=20736
=> AH=12cm
=> BH=9cm ; CH=16cm
Vậy BC=25cm
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: \(BH=\dfrac{6^2}{10}=3.6\left(cm\right)\)
\(AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)
Xét tứ giác AMHN có góc AMH=góc ANH=góc MAN=90 độ
nên AMHN là hình chữ nhật
=>AH=MN=4,8cm
d: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra AM*AB=AN*AC
=>AM/AC=AN/AB
=>ΔAMN đồng dạng với ΔACB
=>góc AMN=góc ACB
giúp mình với các bạn ơi
ta có:
AB2+AC2=62+82=100
BC2=102=100
áp dụng định lí Pytago đảo=>tam giác ABC vuông tại A
áp dụng định lí 1:
AH.BC=AB.AC
<=>AH=\(\dfrac{6.8}{10}=6,8\)
theo định lí 2
AC2=HC.BC
=>HC=82/10=6,4
xét tam giác HAC
HK.AC=AH.HC
HK=6,8.6,4/8=5,44