Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để chứng minh tam giác ABC vuông, ta cần chứng minh rằng tổng bình phương hai cạnh góc nhọn bằng bình phương cạnh huyền.
Áp dụng định lý Pythagoras, ta có:
AB^2 + AC^2 = 6^2 + 8^2 = 36 + 64 = 100
BC^2 = 10^2 = 100
Vậy AB^2 + AC^2 = BC^2, từ đó ta có thể kết luận rằng tam giác ABC là tam giác vuông tại góc A.
b) Ta có:
- H là chân đường cao từ A xuống BC, nên AH là đường cao của tam giác ABC.
- D là điểm đối xứng với H qua AB, nên AD = AH.
- M là giao điểm của AB và HD, nên AM là trung tuyến của tam giác AHD, do đó AM = MD.
- E là điểm đối xứng với H qua AC, nên AE = AH.
- N là giao điểm của AC và HE, nên AN là trung tuyến của tam giác AHE, do đó AN = NE.
Từ đó, ta có AH = AD = AE và AM = MD, AN = NE.
Vậy ta có thể kết luận rằng AH = MN.
c) Để chứng minh D đối xứng với E qua A, ta cần chứng minh rằng AD = AE và góc DAE = 180 độ.
Ta đã chứng minh trong phần b) rằng AD = AE.
Để chứng minh góc DAE = 180 độ, ta cần chứng minh rằng góc DAB + góc BAE = 180 độ.
Vì tam giác ABC là tam giác vuông tại A (chứng minh trong phần a)), nên góc DAB + góc BAE = 90 độ + 90 độ = 180 độ.
Từ đó, ta có thể kết luận rằng D đối xứng với E qua A.
Đồng thời, F là trung điểm BC, nên AF song song với HD (do D là điểm đối xứng với H qua AB) và AF song song với HE (do E là điểm đối xứng với H qua AC).
Vậy ta có thể kết luận rằng AF vuông góc với MN.
a) Ta có: \(AB^2+AC^2=6^2+8^2=36+64=100\)
\(BC^2=10^2=100\)
=> \(AB^2+AC^2=BC^2\)
=> Tg ABC vuông tại A(định lí Pytago đảo)
b) _D đối xứng với H qua AB(gt)=>DH vuông góc AB hay MH vuông góc AB. Mà AB vuông góc AC =>AC //MH hay AN // MH(1)
_Cm tương tự: AM //HN(2)
_(1),(2)=> Tứ giác AMHN là hình bình hành
Mà ^MAN=90° => AMHN là hcn
=> AH=MN (đpcm)
c) _Nối D với E, A với E
_Tg AHN =tg AEN(c.g.c) => AE=AH(3)
Mà AH=MN(cmt) => MN=AE(4)
(3),(4)=> AMNE là hbh => AE // MN(*); AE=MN(5)
_ Xét tg DEH ta có: M là trung điểm DH; N là trung điểm EH (tích chất đối xứng)
=> MN là đường trung bình của tg DEH
=> MN // DE(**); MN= DE/2(6)
_(*),(**)=> D, A, E thẳng hàng(7)
_(5),(6)=> AE= DE/2 kết hợp với (7)=> A là trung điểm DE
=> D đối xứng với E qua A
A B C H D E M N I
a) Tứ giác AEHD có 3 góc vuông nên góc còn lại cũng vuông \(\Rightarrow\) tứ giác AEHD là hình chữ nhật.
b)Ta cần chứng minh NA = AM và A, M, N thẳng hàng
Do tứ giác AEHD là hình chữ nhật nên AD // EH \(\Rightarrow\)AD//NE (1)
Mặt khác DE là đường trung bình nên DE // NM \(\Rightarrow\)DE //NA(2)
Từ (1) và (2) suy ra tứ giác EDAN là hình bình hành \(\Rightarrow\) ED = AN (*)
Tương tự ED = AM (**) .Từ (*) và (**) suy ra AM = AN (***)
Dễ chứng minh \(\Delta\)MAD = \(\Delta\)HAD \(\Rightarrow\)^MAD = ^HAD (4)
Tương tự: ^NAE = ^HAE (5) . Cộng theo vế (4) và (5) suy ra ^MAD + ^NAE = 90o (6)
Từ (6) suy ra ^MAD + ^NAE + ^EAD = 90o + ^EAD = 180o \(\Rightarrow\)N, A, E thẳng hàng (****)
Từ (***) và (****) suy ra đpcm.
c)\(\Delta\)ABC vuông tại A có AI là trung tuyến nên \(AI=\frac{1}{2}BC=CI\)\(\Rightarrow\)\(\Delta\)ACI cân tại I
\(\Rightarrow\)^IAC = ^ICA (7)
Mặt khác ta dễ dàng chứng minh \(\Delta\)CNA = \(\Delta\)CHA (tự chứng minh đi nhé!)
Suy ra ^NCA = ^HCA \(\Rightarrow\)^NCA = ^ICA (8) (vì H, I cùng thuộc B nên ta có H, I, C thẳng hàng do đó ^HCA = ^ICA)
Từ (7) và (8) ta có ^IAC = ^NCA. Mà hai góc này ở vị trí so le trong nên ta có đpcm.
P/s: Không chắc nha!