Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) xét△HBA và △ABC có:
góc BAH= góc BHA (=90 độ)
góc B chung
⇒△HBA∼△ABC (g.g)
b) áp dụng định lí pytago vào △ABC vuông tại A
AB2+AC2=BC2
⇔162+122=BC2
⇔256+144=BC2
⇔√400=20=BC(cm)
vậy BC= 20 cm
vì△HBA∼△ABC(cmt)
ta có tỉ lệ
\(\dfrac{AH}{AC}=\dfrac{AB}{BC}\)hay \(\dfrac{AH}{16}=\dfrac{12}{20}\)
⇒\(AH=\dfrac{12\cdot16}{20}=\dfrac{48}{5}=9.6\left(cm\right)\)
⇒AH = 9,6 cm
áp dụng tính chất đường phân giácAD trong tam giác
\(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)⇒\(\dfrac{12}{16}=\dfrac{BD}{DC}\)⇒\(\dfrac{DC}{16}=\dfrac{BD}{12}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{DC}{16}=\dfrac{BD}{12}=\dfrac{DC+BD}{28}=\dfrac{20}{28}=\dfrac{5}{7}\)
\(\dfrac{BD}{12}=\dfrac{5}{7}\)⇒\(BD=\dfrac{60}{7}\left(cm\right)\)
c) \(DC=BC-BD=20-\dfrac{60}{7}=\dfrac{80}{7}\)
hs tự làm
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét ΔHBAΔHBA và ΔABCΔABC có:
ˆAHB=ˆCAB=90∘AHB^=CAB^=90∘
ˆBB^ là góc chung
⇒ΔHBA∼ΔABC⇒ΔHBA∼ΔABC (g-g)
c) ΔABCΔABC có ADAD là đường phân giác, theo tính chất đường phân giác ta có:
⇒ABAC=DBDC=1216=34⇒ABAC=DBDC=1216=34
SΔABD=12⋅AH⋅BDSΔABD=12·AH·BD
SΔACD=12⋅AH⋅DCSΔACD=12·AH·DC
⇒SΔABDSΔACD=BDDC=34⇒SΔABDSΔACD=BDDC=34
![image](https://img.hoidap247.com/picture/answer/20200606/large_1591413546675.jpg?v=0)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng định lý pi-ta-go cho tam giácABH:
AB^2= AH^2+BH^2
AH^2=AB^2-BH^2
AH^2=169-BH^2 (1)
Áp dụng định lý pi-ta-go cho tam giác ACH
AH^2=AC^2-HC^2
AH^2=196-HC^2 (2)
Từ(1);(2): BH^2-HC^2=-27(*)
Ta lại có: BH+HC=BC=15
=> HC=15-BH(**)
Thay (**) vào (*): BH^2-(225-30HB+HB^2)=-27
BH^2-225+30HB-HB^2=27
-225+30HB=-27
30HB=198
HB=6,6
Áp dụng định lý pi-ta- go cho tam giác AHB
AH^2=AB^2-BH^2
AH^2=169-43,56
AH^2=125,44
AH=11.2(cm)
Ta có AC2-HC^2=AH^2 và AB2-AH2=AH2 (PI-TA-GO)
suy ra AC^2-HC^2=AB^2-HB^2 => 196-HC^2=169-HB^2 =>HC2-HB2=27 =>(15-HB)2-HB2=27 =>225-30HB=27
=>30HB=198 => HB =198:30=6,6
suy ra \(AH=\sqrt{AB^2-HB^2}=\sqrt{169-43,56}\)\(=11,2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tứ giác AKHP có
\(\widehat{PAK}=90^0\)(ΔABC vuông tại A)
\(\widehat{AKH}=90^0\left(HK\perp AB\right)\)
\(\widehat{APH}=90^0\left(HP\perp AC\right)\)
Do đó: AKHP là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét ΔABC vuông tại A, áp dụng định lí py-ta-go ta có:
\(BC^2=AB^2+AC^2\)
\(=21^2+28^2\)
\(=1225\)
->\(BC=\sqrt{1225}=35\left(cm\right)\)
Xét ΔABC có AD là tia phân giác ta có:
\(\dfrac{AB}{BD}=\dfrac{AC}{CD}=\dfrac{AB+AC}{BC}hay\dfrac{21}{BD}=\dfrac{28}{CD}=\dfrac{21+28}{35}=\dfrac{7}{5}\)
⇒\(BD=\dfrac{21.5}{7}=15\left(cm\right)\)
⇒\(CD=\dfrac{28.5}{7}=20\left(cm\right)\)