Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi D là giao điểm của BH với AC
Tam giác ABD có AH là đg cao đồng thời là đường phân giác => ABD cân tại A
=>AC=AB=18cm
=>CD=AD-AC=18-12=6cm
Xét tam giác BCK có M là TĐ của BC, H là trung điểm BD(do tam giác ABD cân tại A nên đg cao AH đồng thời là đg trung tuyến)
=> MH là đg trung bình của tam giác BCD
=>MH= \(\frac{1}{2}\)CD =3cm
bn j ơi ! kết quả là :
\(MH=\frac{1}{2}CD=3cm\)
Đáp số : .....
Gọi E là giao điểm của BH và AC
AD là tia phân giác góc A
AH là đường cao của ΔABE
AH là tia phân giác của \(\widehat{BAE}\)
\(\Rightarrow\Delta ABE\) cân tại A
\(\Rightarrow AB=AE\)
Theo đề ra: AB = 12cm => AE = 12cm
\(EC=AC-AE=18-12=6cm\)
AH là đường cao của ΔABE cân tại A
=> AH là trung tuyến của ΔABE
=> H là trung điểm của BE
Ta có: M là trung điểm của BC
=> HM là đường trung bình của ΔBEC
\(\Rightarrow HM=\frac{EC}{2}=\frac{6}{2}=3cm\)
c/m Tam giác ABH= Tam giác AKH (g-c-g)
=>AB=AK=18cm ; H t/đ BK
=>HM là đường trung bình của tam giác BKC.
=>2HM=KC=AC-AK=18-12=6cm
=>HM=3cm.
Bài 2
gọi E là trung điểm của KB
Vì tam giác CKB có BM=MC ; BE=EK
=>EM//KC
Vì tam giác ENM có AN=AM ; KA//EM
=>EK=KN
Vì KN=KE=EB=>NK=1/2KB
Bài 1:
a, Kéo dài BH cắt AC tại K
\(\Delta AHB=\Delta AHK\left(g.c.g\right)\Rightarrow\hept{\begin{cases}AB=AK=12cm\\HB=HK\end{cases}}\)
Ta có: \(KC=AC-AK=18-12=6\left(cm\right)\)
HM là đường trung bình của \(\Delta BKC\Rightarrow HM=\frac{1}{2}KC=\frac{1}{2}.6=3\left(cm\right)\)
Chúc bạn học tốt.