K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2021

bài 2:

ta có: AB<AC<BC(Vì 3cm<4cm<5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

15 tháng 2 2022

bài 2:

ta có: AB <AC <BC (Vì 3cm <4cm <5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

HT mik làm giống bạn Dương Mạnh Quyết

a: góc C<góc B

=>AB<AC

b: Xét ΔABM co AB=AM và góc A=60 độ

nên ΔAMB đều

Bài 2: Cho tam giác ABC có góc A>90 độ , lấy điểm M thuộc cạnh AB .a) So sánh AC và MC b) Chứng minh tam giác MBC là tam giác tùc) Chứng minh AC <MC <BCBài 3: Cho tam giác MNP có Góc N>90 độ , trên tia đối của tia NP lấy điểm Q .a) So sánh MN và MP b) Chứng minh tam giác MPQlà tam giác tù.c) Chứng minh MN<MP<MQBài 4: Cho tam giác ABC có AB=3 cm, AC=4 cma) So sánh góc B với gócCb) Hạ AH vuông góc với BC tại H . So sánh góc...
Đọc tiếp

Bài 2: Cho tam giác ABC có góc A>90 độ , lấy điểm M thuộc cạnh AB .
a) So sánh AC và MC 
b) Chứng minh tam giác MBC là tam giác tù
c) Chứng minh AC <MC <BC
Bài 3: Cho tam giác MNP có Góc N>90 độ , trên tia đối của tia NP lấy điểm Q .
a) So sánh MN và MP 
b) Chứng minh tam giác MPQlà tam giác tù.
c) Chứng minh MN<MP<MQ
Bài 4: Cho tam giác ABC có AB=3 cm, AC=4 cm
a) So sánh góc B với gócC
b) Hạ AH vuông góc với BC tại H . So sánh góc BAH và góc CAH
Bài 5: Cho tam giác ABC có AB = 5 cm, AC = 3 cm
a) So sánh góc B với góc C
b) So sánh hai góc ngoài tại các đỉnh B và C của tam giác ABC
Bài 6: Cho tam giác ABC vuông tại A có AC=2AB . Lấy điểm E trên cạnh AC sao cho
AB=AE . Trên tia đối của tia EB lấy điểm D sao cho EB=ED
a) Chứng minh tam giác ABE= tam giác CDE 
b) So sánh góc ABE  và góc CBE

0
7 tháng 5 2016

a)

ta có tam giác ABC vuông tại A. 

Áp dụng định lí py-ta-go, ta có:

\(BC^2=AB^2+AC^2=6^2+8^2=36+64=100\)

\(BC=100=10\left(cm\right)\)

b)

ta có: 10cm>8cm>6cm

=> BC>AC>AB

=> A>B>C

c)

kẻ BN

ta có: MA<AB

=>MN<BN(1)

ta có: AC>AN

=> BC>BN(2)

từ (1)(2), ta có:

 MN<BN

BN<BC

=> MN<BC

        

7 tháng 5 2016

AC=*cm nên mk đoán là 8cm nhé

nếu sai thì thôi, đúng thì mn

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Theo đề bài ta có AB = 4cm, BC = 7cm, AC = 6cm

Có góc đối diện với cạnh AB là góc C, góc A đối diện với cạnh BC, góc B đối diện với cạnh AC

Theo định lí về góc đối diện với cạnh lớn hơn thì lớn hơn ta có :

\( \Rightarrow \widehat A > \widehat B > \widehat C\)

b)

Vì \(\widehat{A}=\widehat{C}\) nên tam giác ABC cân tại B

\( \Rightarrow BA = BC\)

Áp dụng định lí tổng 3 góc trong tam giác ABC, có:

\( \Rightarrow \widehat B = {180^o} - {100^0} = {80^o}\)

\( \Rightarrow \widehat B > \widehat A=\widehat C\)

\( \Rightarrow AC\) là cạnh lớn nhất tam giác ABC (Quan hệ giữa góc và cạnh đối diện trong tam giác)

a: góc C=180-60-80=40 độ

góc BAD=góc CAD=60/2=30 độ

góc ADB=180-80-30=70 độ

b: vì góc BAD<góc ADB<góc ABD

nên BD<AB<AD

c: góc ADC=180-70=110 độ

Vì góc ADC>góc C>góc DAC

nên AC>AD>CD

30 tháng 1 2023

a) Góc C = 180 - 60 - 80 = 400

Góc BAD = góc CAD = \(\dfrac{60}{2}\) = 300

Góc ADB = 180 - 80 - 30 = 700

b) Vì góc BAD < góc ADB < góc ABD

nên BD < AB < AD

c) Góc ADC = 180 - 70 = 1100

Vì góc ADC > góc C > góc DAC

nên AC > AD > CD

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)

hay AC=12(cm)

Vậy: AC=12cm

câu b,c đâu rồi