Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề câu a thành tính độ dài AE, CE
a, Vì BE là phân giác của ABC
\(\Rightarrow\frac{EC}{BC}=\frac{AE}{AB}\)\(\Rightarrow\frac{EC}{4}=\frac{AE}{7}=\frac{EC+AE}{4+7}=\frac{AC}{11}=\frac{6}{11}\)(Áp dụng tính chất dãy tỉ số bằng nhau)
Do đó: \(\frac{EC}{4}=\frac{6}{11}\)\(\Rightarrow EC=\frac{4.6}{11}=\frac{24}{11}\) ; \(\frac{AE}{7}=\frac{6}{11}\)\(\Rightarrow AE=\frac{6.7}{11}=\frac{42}{11}\)
b, Xét △ABH vuông tại H và △CBF vuông tại F
Có: ABH = CBF (gt)
=> △ABH ᔕ △CBF (g.g)
\(\Rightarrow\frac{AB}{CB}=\frac{BH}{BF}\)\(\Rightarrow AB.BF=BH.BC\)
c, Gọi DF ∩ BC = { K } ; CF ∩ AB = { I } ; GE ∩ DF = { O }
Xét △BIC có BF vừa là đường cao vừa là đường phân giác
=> △BIC cân tại B
=> BI = BC
và IF = FC
mà AD = DC
=> DF là đường trung bình của △CAI
=> DF // AI và 2FD = AI
=> DF // AB
=> DK // AB
Xét △ABC có: DK // AB và AD = DC (gt)
=> DK là đường trung bình của △ABC
=> K là trung điểm của BC
=> BK = KC
Vì DF // AB (cmt)
- \(\Rightarrow\frac{BG}{GD}=\frac{BI}{DF}\)(định lý Thales) \(\Rightarrow\frac{BG}{GD}=\frac{2BI}{2DF}\)\(\Rightarrow\frac{BG}{GD}=\frac{2BI}{AI}\) (1)
- \(\Rightarrow\frac{AE}{DE}=\frac{AB}{DF}\) (Hệ quả định lý Thales)
Ta có: \(\frac{CE}{DE}=\frac{DC-DE}{DE}=\frac{DC}{DE}-1=\frac{AD}{DE}-1=\frac{AE-DE}{DE}-1=\frac{AE}{DE}-1-1=\frac{AB}{DF}-2\)
\(=\frac{AB}{DF}-2=\frac{2\left(AI+BI\right)}{2DF}-2=\frac{2AI+2BI}{AI}-2=\frac{2AI+2BI-2AI}{AI}=\frac{2BI}{AI}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{BG}{GD}=\frac{CE}{DE}\)\(\Rightarrow GE//BC\)
- \(\Rightarrow\frac{GO}{KC}=\frac{OF}{FK}\) (Hệ quả định lý Thales)
- \(\Rightarrow\frac{OE}{BK}=\frac{OF}{FK}\) (Hệ quả định lý Thales)
\(\Rightarrow\frac{GO}{KC}=\frac{OE}{BK}\)
Mà KC = BK
=> GO = OE
=> O là trung điểm của GE
Mà GE ∩ DF = { O }
=> DF đi qua trung điểm của EG
M A B C D E O I K 1 2
a) Xét tứ giác ADME có:
\(MD//AE\left(MD//AC\right)\)
\(ME//AD\left(ME//AB\right)\)
\(\Rightarrow ADME\)là hình bình hành ( dấu hiệu 1 )
b) Vì ADME là hình bình hành ( câu a )
\(\Rightarrow DE\)cắt \(AM\)tại trung điểm
Mà O là trung điểm DE
\(\Rightarrow\)O là trung điểm AM
\(\Rightarrow\)A,O,M thẳng hàng (đpcm)
c) Xét \(\Delta AIM\)vuông tại I có IO là đường trung tuyến
\(\Rightarrow OI=OA=OM=\frac{1}{2}AM\)
\(\Rightarrow\Delta AOI\)cân tại O
\(\Rightarrow\widehat{A_1}\)\(=\widehat{I_1}\)
Xét \(\Delta AOI\)có: \(\widehat{O_1}=\widehat{A_1}+\widehat{I_1}\)( định lý góc ngoài tam giác )
\(\Rightarrow\widehat{O_1}=2.\widehat{A_1}\)
CMTT: \(\widehat{O_2}=2.\widehat{A_2}\)
Ta có: \(\widehat{IOK}=\widehat{O_1}+\widehat{O_2}=2\left(\widehat{A_1}+\widehat{A_2}\right)=2\widehat{BAC}=2.60^o=120^o\)
Vậy \(\widehat{IOK}=120^o\)
#Bảo___
a)xét tứ giác ADME có
CÂB =AÊM=góc ADM=900
=>ADME là hcn
b)vì MA là đg trung tuyến nên MA=MC=MB
xét tam giác CMA có
CM=MA(cmt)
CÊM=AÊM=900
EM là cạnh chung
=>...(cạnh huyền-cạnh góc vuông)
=>CE=EA
mà EA=MD(EAMD là hcn) nên CE=MD (1)
ta có MA=MC(cmt)
mà MA=ED(EAMD là hcn)
=>MC=ED (2)
xét tứ giác CMDE có CE=MD,CM=ED( 1 và 2)
=>CMED là hbh
c)
xét tam giác MDB vuông tại D có DI là trung tuyến nên MI=IB=ID
xét tứ giác MKDI có
KM=KD(K là giao điểm hai dg chéo của hcn)
KM=MI(vì MA=MB mà K và I lần lượt là trung điểm của chúng)
MI=ID(cmt)
=>KMID là thoi
mà KI là đg chéo của góc I nên KI cũng là p/g của góc I
(ck hk tốt nhé)