K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

a) Ta có: AB = AD (gt) => A thuộc đường trung trực của BD

CB = CD (gt) => C thuộc đường trung trực của BD.

Vậy AC là đường trung trực của BD.

b) Xét ∆ ABC và ∆ADC có AB = AD (gt)

BC = DC (gt)

AC cạnh chung

nên ∆ ABC = ∆ADC (c.c.c)

Suy ra: \(\widehat{B}=\widehat{D}\)

Ta có \(\widehat{B}+\widehat{D}=360^o-\left(100^o+60^o\right)=200^o\)

Do đó \(\widehat{B}=\widehat{D}=100^o\)

21 tháng 4 2017

Bài giải:

a) Ta có: AB = AD (gt) => A thuộc đường trung trực của BD

CB = CD (gt) => C thuộc đường trung trực của BD.

Vậy AC là đường trung trực của BD.

b) Xét ∆ ABC và ∆ADC có AB = AD (gt)

BC = DC (gt)

AC cạnh chung

nên ∆ ABC = ∆ADC (c.c.c)

Suy ra: ˆB=ˆD⇒B^=D^

Ta có ˆB+ˆD=3600(100+60)=200B^+D^=3600−(100+60)=200

Do đó ˆB=ˆD=1000B^=D^=1000

12 tháng 5 2017

xét tam giác AHB và tam giác CHA có

góc H = 90 độ

AH là cạnh chung

góc B = góc C (kề bù)

suy ra tam giác AHB đồng dạng tam giác CHA( G.C.G)

\(\dfrac{AH}{CH}=\dfrac{HB}{AH}\Rightarrow AH\cdot AH=HB\cdot HC\)

\(\Rightarrow AH^2=HB\cdot HC\)

13 tháng 3 2020

Trong ΔABC, ta có: AD là đường phân giác của (BAC)

Suy ra: \(\frac{DB}{DC}=\frac{AB}{AC}\)(tính chất đường phân giác)

Mà AB = 15 (cm); AC = 20 (cm)

Nên \(\frac{DB}{DC}=\frac{15}{20}\)

uy ra: \(\frac{DB}{DB+DC}=\frac{15}{15+20}\)(tính chất tỉ lệ thức)

Suy ra: \(\frac{DB}{BC}=\frac{15}{35}\Rightarrow DB=\frac{15}{35}.BC=\frac{15}{35}.25=\frac{75}{7}cm\)

\(\Rightarrow DC=BC-BD=25-\frac{75}{7}=\frac{100}{7}cm\)

b. Kẻ AH ⊥ BC

Ta có: SABD = 1/2 AH.BD; SADC = 1/2 AH.DC

Suy ra :\(\frac{S_{ABD}}{S_{ADC}}=\frac{\frac{1}{2}AH.BD}{\frac{1}{2}AH.DC}=\frac{BD}{DC}\)

\(\frac{DB}{DC}=\frac{15}{20}=\frac{3}{4}\)

\(\Rightarrow\frac{S_{ABD}}{S_{ADC}}=\frac{3}{4}\)

12 tháng 3 2020

Trong ∆ ABC ta có: DE // AC (gt)

Suy ra: \(\frac{AE}{AB}=\frac{CD}{CB}\)(định lí Ta-lét) (1)

Lại có: DF // AB (gt)

Suy ra: \(\frac{AF}{AC}=\frac{BD}{BC}\)(định lí Ta-lét) (2)

Cộng trừ vế (1) và (2), ta có:

\(\frac{AE}{AB}+\frac{AF}{AC}=\frac{CD}{BC}+\frac{BD}{BC}=\frac{BC}{BC}=1\)