Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E D
a)Xét ΔBEC và ΔCDB có:
\(\widehat{BEC}=\widehat{CDB}=90^o\) (gt)
BC: cạnh chung
\(\widehat{B}=\widehat{C}\) ( vì ΔABC có AB=AC=> ΔABC cân tại A)
=> ΔBEC =ΔCDB( cạnh huyền- góc nhọn)
=> BD=CE
b)Vì ΔBEC=ΔCDB 9cmt)
=> BE=CD
Có : AB=AE+BE
AC=AD+DC
Mà AB=AC(gt) ; BE=CD(cmt)
=>AE=AD
Xét ΔAOE và ΔAOD có:
AE=AD(cmt)
\(\widehat{AEO}=\widehat{ADO}=90^o\left(gt\right)\)
OA: cạnh chung
=> ΔAOE=ΔAOD (cạnh huyenf - cạnh góc vuông)
=> OE=OD
c) Vì ΔBEC=ΔCDB (cmt)
=> \(\widehat{BCE}=\widehat{CBD}\)
=> ΔOBC cân tại O
=> OB=OC
d)Vì ΔAOE=ΔAOD(cmt)
=> \(\widehat{OAE}=\widehat{OAD}\)
=> AO là tia pg của goac BAC
Ta có hình vẽ sau:
1 2 B A C E D O 1 2
a) Xét ΔABD và ΔACE có:
\(\widehat{A}\) : Chung
AB = AC (gt)
\(\widehat{ADB}=\widehat{AEC}=90^o\) (gt)
=> ΔABD = ΔACE (g.c.g)
=> BD = CE (2 cạnh tương ứng) (đpcm)
b) Vì ΔABD = ΔACE (ý a)
=> AD = AE(2 cạnh tương ứng)
mà AB = AC (gt)
=> EB = ED
và \(\widehat{EBD}=\widehat{DCE}\) (2 góc tương ứng)
Xét ΔOEB và ΔODC có:
\(\widehat{OEB}=\widehat{ODC}=90^o\) (gt)
EB = ED (cm trên)
\(\widehat{EBD}=\widehat{DCE}\) (cm trên)
=> ΔOEB = ΔODC (g.c.g)
=> OE = OD(2 cạnh tương ứng) (đpcm)
c) Vì ΔOEB = ΔODC (ý b)
=> OB = OC (2 cạnh tương ứng) (đpcm)
d) Vì ΔABD = ΔACE (ý a)
=> AD = AE(cạnh tương ứng)
Xét ΔAOE và ΔAOD có:
OE = OD (ý b)
\(\widehat{AEO}=\widehat{ADO}=90^o\) (gt)
AD = AE (cm trên)
=> ΔAOE = ΔAOD (c.g.c)
=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc tương ứng)
=> AO là tia phân giác của \(\widehat{BAC}\) (đpcm)
A B C D H 1 2
a) Xét Δ AHB và ΔDHB có:
BH: cạnh chung
\(\widehat{AHB}=\widehat{DHB}=90^o\)
AH=DH(gt)
=> Δ AHB = ΔDHB (c.g.c)
b) Vì: ΔAHB=ΔDHB(cmt)
=> AB=BD ; \(\widehat{B_1}=\widehat{B_2}\)
Xét ΔABC và ΔDBC có:
BC:cạnh chung
\(\widehat{B_1}=\widehat{B_2}\) (cmt)
AB=BD
=> ΔABC = ΔDBC(c.g.c)
=> \(\widehat{BAC}=\widehat{BDC}\)
Mà: \(\widehat{BAC}=90^o\)
=> \(\widehat{BDC}=90^o\)
hay \(BD\perp CD\)
c) Xét ΔABC vuông tại A (gt)
=> \(\widehat{B_1}+\widehat{ACB}=90^o\)
=> \(\widehat{ACB}=90^o-\widehat{B_1}=90-60=30^o\)
Vì: ΔABC = ΔDBC (cmt)
=> \(\widehat{ACB}=\widehat{DCB}\)
=>\(\widehat{ACD}=2\cdot\widehat{ACB}=2\cdot30=60\)
A B C H D a) Xét ΔAHB và ΔDHB có:
HB là cạnh chung
\(\widehat{AHB}=\widehat{DHB}=90^o\)
AH=HD (gt)
=> ΔAHB=ΔDHB (c-g-c)
b) Theo câu a ta có: ΔAHB=ΔDHB
=> AB=DB; \(\widehat{ABH}=\widehat{DBH}\)
Xét ΔABC và ΔDBC có:
BC là cạnh chung
\(\widehat{ABC}=\widehat{DBC}\) (chứng minh trên)
AB=DB (chứng minh trên)
=> ΔABC=ΔDBC (c-g-c)
=> \(\widehat{BAC}=\widehat{BDC}\)
Mà \(\widehat{BAC}=90^o\) => \(\widehat{BDC}=90^o\)
Vậy BD\(\perp\)DC
c) Vì ΔABC vuông tại A nên \(\widehat{ABC}+\widehat{BCA}=90^o\)
=> \(\widehat{BCA}\)= \(90^o-\widehat{ABC}\)=90o-60o=30o
Theo câu b ta có: ΔABC=ΔDBC
=> \(\widehat{ACB}=\widehat{DCB}=30^o\)
=> \(\widehat{ACD}=\widehat{ACB}+\widehat{DCB}=30^o+30^o=60^o\)
Vậy \(\widehat{ACD}=60^o\)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra:BD=CE
b: Xét ΔAEO vuông tại E và ΔADO vuông tại D có
AO chung
AE=AD
Do đó: ΔAEO=ΔADO
Suy ra: OE=OD
c: Ta có: OE+OC=EC
OD+OB=DB
mà EC=DB
và OE=OD
nên OC=OB
d: Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
Do đó: ΔABO=ΔACO
Suy ra: \(\widehat{BAO}=\widehat{CAO}\)
hay AO là tia phân giác của góc BAC
Trần Việt LinhNguyễn Quốc ViệtNguyễn Lê Hoàng ViệtĐỗ Hương Giang
Nguyễn Huy ThắngNguyễn Huy TúVõ Đông Anh TuấnLê Nguyên Hạo
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra:BD=CE
b: Xét ΔAEO vuông tại E và ΔADO vuông tại D có
AO chung
AE=AD
Do đó: ΔAEO=ΔADO
Suy ra: OE=OD
c: Ta có: OE+OC=EC
OD+OB=DB
mà EC=DB
và OE=OD
nên OC=OB
d: Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
Do đó: ΔABO=ΔACO
Suy ra: \(\widehat{BAO}=\widehat{CAO}\)
hay AO là tia phân giác của góc BAC