Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D E M F I K J
Trên tia đối của tia AM, lấy điểm I sao cho MI = MA. Khi đó ta có thể suy ra \(\Delta AMC=\Delta IMB\left(c-g-c\right)\)
\(\Rightarrow\widehat{MCA}=\widehat{MBI}\) hay BI // AC và BI = AC.
Gọi N là giao điểm của BI và AE. Do AE vuông góc với AC nên AE cũng vuông góc với BI. Vậy thì \(\widehat{AKI}=90^o\)
Ta thấy hai góc DAE và ABI có \(DA\perp AB;AE\perp BI\) nên \(\widehat{DAE}=\widehat{ABI}\)
Vậy thì \(\Delta DAE=\Delta ABI\left(c-g-c\right)\)
\(\Rightarrow\widehat{DEA}=\widehat{AIB}\)
Kéo dài NI cắt DE tại J, AI cắt DE tại F.
Xét tam giác vuông NEJ ta có \(\widehat{NJE}+\widehat{JEN}=90^o\)
Vậy nên \(\widehat{NJE}+\widehat{JIF}=90^o\Rightarrow\widehat{JFI}=90^o\)
Hay \(AM\perp DE.\)

Lời giải:
A E H D B M C A'
Từ B kẻ đường thẳng song song với AC,cắt AH tại A' thì \(BA'\perp AE\)
Ta có : \(\widehat{A'BA}=\widehat{EAD}\)và \(\widehat{ADE}=\widehat{A'AB}\)(các cặp góc nhọn có cạnh tương ứng vuông góc)
\(\Delta EAD=\Delta A'BA\left(g-c-g\right)\)do đó BA' = AE mà AE = AC nên BA' = AC
Gọi M là giao điểm của AA' với BC,ta có :
\(\Delta AMC=A'MB\left(g-c-g\right)\), vì thế MB = MC
Vậy đường thẳng AH đi qua trung điểm của BC.

Câu hỏi của Nguyễn Đức Hiếu - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
Chị Hoàng Thị Thu Huyền ơi, chị nhầm bài roài ạ. Nó ko tham khảo đc đâu. Bài chị bảo dễ hơn bài này nhiều. Nếu chị thấy dễ mong chị đại nhân dành một chút tg vàng bạc của mình giảng cho chúng tiểu nhân em hiểu ạ. Em chân thành cảm ơn ạ

Bạn tham khảo nhé!
Câu hỏi của Huyền Anh Kute| Học trực tuyến
Trên tia AM lấy điểm A’ sao cho AM = MA’
Dễ chứng minh được ∆AMC = ∆A’MB ( g.c.g)
A’B = AC ( = AE) và góc MAC = góc MA’B
AC // A’B => góc BAC + góc ABA’ = 1800 (cặp góc trong cùng phía)
Mà góc DAE + góc BAC = 1800 => góc DAE = góc ABA’
Xét ∆DAE và ∆ABA’ có : AE = A’B , AD = AB (gt)
góc DAE = góc ABA’ ∆DAE = ∆ABA’(c.g.c)
góc ADE = góc BAA’ mà góc HAD + góc BAA’ = 900
=> góc MAD + góc ADE = 900. Suy ra MA vuông góc với DE
M A B C H D E N K
+) Lấy N đối xứng với A qua M
Tam giác AMC = tam giác NMB ( AM = MN; góc AMC = NMB ; MC = MB)
=> góc MBN = ACM => góc ABN = ABM + MBN = ABM + ACM = 180o - BAC
Mặt khác, vì DAB = EAC = 90o nên góc DAE = 180o - BAC
=> góc ABN = DAE
kết hợp với AD = AB; AN = AE (- AC) => tam giác ADE = ABN (c - g - c)
=> góc ADE = BAM ( 2 góc tương ứng)
Có góc AKD = 180o - (ADE + DAK) = 180o - (BAM + DAK) = 180o - 90o = 90o
=> AK | DE
Vậy...