Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tọa độ A là:
2x-3y+12=0 và 2x+3y=0
=>x=-3 và y=2
Tọa độ M, M là trung điểm của BC là M(x;-3x/2)
Phương trình BC sẽ là: 3x+2y+c=0
Thay x=4 và y=-1 vào BC, ta được:
3*4+2*(-1)+c=0
=>c+12-2=0
=>c=-10
=>BC: 3x+2y-10=0
=>B(x;5-1,5x); y=5-1,5x
B(x;5-1,5x); C(4;-1); M(x;-3x/2)
Theo đề, ta có: x=(4+x)/2 và -1,5x=(5x-1)/2
=>2x=x+4 và -3x=5x-1
=>x=4 và -8x=-1(loại)
=>Không có điểm B nào thỏa mãn
Tọa độ trọng tâm là:
3x-5y=12 và 3x-7y=14
=>x=7/3 và y=-1
Gọi A(x1,y1); C(x2,y2)
Theo đề, ta có: x1+x2+1=7 và y1+y2-1=-3 và 3x1-5y1-12=0 và 3x2-7y2-14=0
=>x1+x2=6 và y1+y2=-2 và 3x1-5y1=12 và 3x2-7y2=14
=>x1=-1; x2=7; y1=-3; y2=1
=>A(-1;-3); C(7;1)
Tọa độ trọng tâm là:
3x-5y=12 và 3x-7y=14
=>x=7/3 và y=-1
Gọi A(x1,y1); C(x2,y2)
Theo đề, ta có: x1+x2+1=7 và y1+y2-1=-3 và 3x1-5y1-12=0 và 3x2-7y2-14=0
=>x1+x2=6 và y1+y2=-2 và 3x1-5y1=12 và 3x2-7y2=14
=>x1=-1; x2=7; y1=-3; y2=1
=>A(-1;-3); C(7;1)
M(x1;8x1+3); B(1/8y1+3/8;y1); N(x2;14/13x2-9/13); C(13/14y2+9/14; y2)
Theo đề, ta có: (13/14y2+4+9/14)=2x1 và y2-1=16x1+6
=>x1=13/90 và y2=-211/45
=>M(13/90; 187/45); C(-167/45; -211/45)
Theo đề, ta có:
1/8y1+3/8+4=2x2 và y1-1=2(14/13x2-9/13)
=>2x2-1/8y1=35/8 và 28/13x2-y1=-1+18/13=5/13
=>x2=5/2; y1=5
=>N(5/2;2); B(1/2;5)
A B C M N E H
goi B(a; b) N( c; d)
\(N\in\left(CN\right)\Rightarrow\)c+8d-7 = 0(1)
N la trung diem AB\(\Rightarrow2c=1+a\left(2\right)\)
2d = -3 +b (3)
B\(\in\left(BM\right)\)\(\Rightarrow\)a+b -2 =0 (4)
tu (1) (2) (3) (4) \(\Rightarrow a=-5;b=7\Rightarrow B\left(-5;7\right)\)
dt (AE) qua vuong goc BM. \(\Rightarrow pt\)(AE):x-y-4 = 0
tọa độ H \(\left\{{}\begin{matrix}x-y-4=0\\x+y-2=0\end{matrix}\right.\Rightarrow H\left(3;-1\right)\);H là trung điểm AE
\(\Rightarrow E\left(5;1\right)\). vì ptdt (BE) cung la ptdt qua (BC):
3x+5y-20 =0
tọa độ C là nghiệm hệ \(\left\{{}\begin{matrix}3x+5y-20=0\\x+8y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{139}{21}\\\dfrac{1}{21}\end{matrix}\right.\)
\(\Rightarrow C\left(\dfrac{139}{21};\dfrac{1}{21}\right)\)
Lời giải:
Vì $A\not\in (d_1); (d_2)$ nên 2 đường trung tuyến này xuất phát từ đỉnh B và đỉnh C.
Gọi đây lần lượt là đường trung tuyến $BM,CN$
Gọi tọa độ $B(b, 2b-1), M(m, 2m-1), C(1,c), N(1,n)$
$M$ là trung điểm $AC$ nên: $m=\frac{3+1}{2}$ và $2m-1=\frac{1+c}{2}$
$\Rightarrow m=2; c=5$
Vậy tọa độ điểm C là $(1,5)$
$N$ là trung điểm $AB$ nên: $1=\frac{3+b}{2}$
$\Rightarrow b=-1$. Tọa độ $B(-1, -3)$