Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình thì bạn tự vẽ nhớ.
Xét tam giác vuông AHC có:
Góc HCA = 30 độ => Tam giác AHC là tam giác nửa đều
=> AH=\(\frac{1}{2}\)AC ( Tính chất tam giác nửa đều )
=> AH = 20
Xét tam giác AHB có:
\(AH^2+HB^2=AB^2\)( Định lý Py ta go )
=> BH= 21
Vậy BH=21
3 10 5 A B C H 30 o
Xét \(\Delta AHC\) có :
\(\widehat{AHC}+\widehat{ACH}+\widehat{HAC}=180^{^O}\)(Tổng 3 góc của 1 tam giác)
=> \(90^{^O}+30^{^O}+\widehat{HAC}=180^o\)
=> \(120^o+\widehat{HAC}=180^o\)
=> \(\widehat{HAC}=180^o-120^o\)
=> \(\widehat{HAC}=60^o\)
Xét \(\Delta ABH\) vuông tại H (\(AH\perp BC\)) có :
\(AH^2=AB^2-BH^2\) (định lí PITAGO)
=> \(AH^2=5^2-3^2=16\)
=> \(AH=\sqrt{16}=4\left(cm\right)\)
Ta có : \(H\in BC\Rightarrow BC=BH+HC\)
\(\Rightarrow HC=10-3=7\left(cm\right)\)
Xét \(\Delta AHC\) vuông tại H (\(AH\perp BC\)) có :
\(AC^2=AH^2+HC^2\) (Định lí PITAGO)
=> \(AC^2=4^2+7^2=65\)
=> \(AC=\sqrt{65}\)
Áp dụng đ.lí pytago trong tam giác vuông ABH ta có;
AH2+BH2=AB2
=>AH2=AB2-BH2=52-32
=>AH2=25-9=16
=>AH=+(-)4
mà AH>0 =>AH=4 cm
Lại có;
BH+HC=BC
=>HC=BC-BH=8-3
=>HC=5 cm
Áp dụng đ.lí pytago trong tam giác vuông AHC ta có:
AC2=AH2+HC2
=>AC2=42+52=16+25
=>AC2=41
=>AC=+(-)√41
Mà AC >0 =>AC=√41cm
Vậy AH=4 cm; HC=5 cm ; AC= √41cm