K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2017

A B C D M 1 2 1 1

a, Xét \(\Delta MAB-\Delta MDC:\)

           \(\widehat{M_1}=\widehat{M_2}\)

           \(AM=MD\left(gt\right)\)

             \(BM=MC\left(gt\right)\)

\(\Rightarrow\)\(\Delta MAB=\Delta MDC\left(c.g.c\right)\)

b, Có \(\Delta MAB=\Delta MDC\left(cmt\right)\)

         \(\Rightarrow\widehat{A_1}=\widehat{D_1}\)

Hay AB // CD.

10 tháng 12 2017

xét tam giác suy ra 2 góc slt bằng nhau

14 tháng 9 2018

11 tháng 12 2019

HÌNH TỰ VẼ

a,VÌ M LÀ TRUNG ĐIỂM CỦA BC

\(\Rightarrow\)BM=MC

XÉT TAM GIÁC AMC VÀ TAM GIÁC DMB

BM=MC

\(\widehat{BMD}\)=\(\widehat{AMC}\)(2 GÓC KỀ BÙ)

MD=MA

\(\Rightarrow\)TAM GIÁC AMC = TAM GIÁC DMB

\(\Rightarrow\)BD=AC(2 CẠNH TƯƠNG ỨNG)

11 tháng 12 2019

a) Xét ΔBMD và ΔCMA có:

MB=MC(M: trđ BC) 

BMD=CMA(đối đỉnh)

MA=MD(gt) 

=>ΔBMD=ΔCMA(c.g.c) 

=>BD=AC(hai cạnh tương ứng) 

=>đpcm

b) Vì ΔBMD=ΔCMA

=>DBM=MCA(hai góc tương ứng) 

Mà hai góc ở vị trí so le trong 

=>BD//AC

Ta có:

BD//AC

BA \(\perp\) AC

=>AB\(\perp\) BD

=>đpcm

1 tháng 2 2018

a) Xét tam giác AMB và tam giác DMC có:

BM = CM (gt)

AM =DM (gt)

\(\widehat{AMB}=\widehat{DMC}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)

Chúng lại ở vị trí so le trong nên AB //CD.

c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.

Suy ra MA = ME

Lại có MA = MD nên ME = MD.

d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.

Suy ra ED // BC

Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.

Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

6 tháng 12 2021

NGU

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Xét ΔMBA và ΔMCD có 

MB=MC

\(\widehat{AMB}=\widehat{DMC}\)

MA=MD

Do đó: ΔMBA=ΔMCD

15 tháng 12 2017

A B C M D

a) Xét tam giác ABM và tam giác DCM có:

AM = DM

BM = CM

\(\widehat{BMA}=\widehat{CMD}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c-g-c\right)\)

b) Do \(\Delta ABM=\Delta DCM\Rightarrow AB=DC;\widehat{BAM}=\widehat{CDM}\)

Chúng lại ở vị trí so le trong nên AB // CD.

15 tháng 12 2017

vẽ Tam giác giúp em luôn nha

7 tháng 3 2024

loading...  

a) Do M là trung điểm của BC (gt)

⇒ MB = MC

Xét ∆AMB và ∆DMC có:

AM = DM (gt)

∠AMB = ∠DMC (đối đỉnh)

MB = MC (cmt)

⇒ ∆AMB = ∆DMC (c-g-c)

⇒ ∠MAB = ∠MDC (hai góc tương ứng)

Lại có:

∠MAC + ∠MAB = 90⁰ (∆ABC vuông tại A)

⇒ ∠MAC + ∠MDC = 90⁰

⇒ ∠DAC + ∠ADC = 90⁰

∆CDA có:

∠DAC + ∠CDA + ∠ACD = 180⁰ (tổng ba góc trong ∆ACD)

⇒ ∠ACD = 180⁰ - (∠DAC + ∠CDA)

= 180⁰ - 90⁰

= 90⁰

⇒ ∆ACD vuông tại C

Do ∆AMB = ∆DMC (cmt)

⇒ AB = CD (hai cạnh tương ứng)

Xét hai tam giác vuông: ∆ABC và ∆CDA có:

AC là cạnh chung

AB = CD (cmt)

⇒ ∆ABC = ∆CDA (hai cạnh góc vuông)

b) Do ∆ABC = ∆CDA (cmt)

⇒ BC = AD (hai cạnh tương ứng)

Do AM = DM (gt)

⇒ AM = DM = ½AD

Mà AD = BC (cmt)

⇒ AM = ½BC

a: Xét tứ giác ABDC có 

M là trung điểm của AD

M là trung điểm của BC

DO đó: ABDC là hình bình hành

Suy ra: AB=DC; AC=BD

Xét ΔABC và ΔCDA có 

AB=CD

BC=DA

AC chung

Do đó: ΔABC=ΔCDA

b: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên AM=1/2BC

30 tháng 3 2020

E B A C M D O

a) Xét tam giác CMA và tam giác BMD có : 

\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)

=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)

=> ACBD là hình bình hành 

=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm 

b) Xét tam giác ABC và tam giác CDA có : 

\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)  

        Chung AC 

=> AD=BC

=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm 

c) Xét tam giác ABC có : 

M là trung điểm BC 

A là trung điểm CE 

Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm ) 

e) AM //BE => AD // BE 

Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B 

=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)

Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm 

=> E,O , D thẳng hàng => đpcm 

a: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

Suy ra: AC=BD

b: Ta có: ABDC là hình chữ nhật

nên \(\widehat{ABD}=90^0\)

c: ta có:ΔABC vuông tại A

mà AM là đường trung tuyến

nên AM=BC/2