Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc ABD+góc A=90 độ
góc ACE+góc A=90 độ
=>góc ABD=góc ACE
b: góc ABD=góc ACE
góc ABD+góc DBC=góc ABC
góc ACE+góc ICB=góc ACB
mà góc ABD=góc ACE và góc ABC>góc ACB
nên góc DBC>góc ICB
=>góc IBC>góc ICB
=>IC>IB
c: S ABC=1/2*CE*AB=1/2*BD*AC
=>CE*AB=BD*AC
A B C D E H 1 2 3 4
GT tam giác ABC cân
\(\widehat{A}< 90^o\)
\(BD\perp AC\left(D\in AC\right)\)
\(CE\perp AB\left(E\in AB\right)\)
BD và CE cắt nhau tại H
KL : BD = CD
tam giác BHC cân
AH là đường trung trực của BC
a) Xét tam giác BDC và tam giác CEB có
\(\widehat{BDC}=\widehat{CEB}=90^o\)
BC cạnh chung
\(\widehat{H_1}=\widehat{H_3}\)( 2 góc kề bù )
=> tam giác BDC = tam giác CEB (g-c-g)
=> BD = CE ( 2 cạnh tương ứng )
b) Vì tam giác ABC là tam giác cân
=> \(\widehat{B}=\widehat{C}\)
Vì \(\widehat{B}=\widehat{C}\)
=> tam giác BHC cân
c) Kẻ AH
chép tại https://olm.vn/hoi-dap/detail/79620623509.html :v
a, Vì △ABC cân tại A => AB = AC
Xét △ABD vuông tại D và △ACE vuông tại E
Có: BAC là góc chung
AB = AC (cmt)
=> △ABD = △ACE (ch-gn)
c, Ta có: AE + BE = AB và AD + DC = AC
Mà AB = AC (cmt) ; AD = AE (△ABD = △ACE)
=> BE = DC
Xét △HEB vuông tại E và △HDC vuông tại D
Có: BE = DC (cmt)
EBH = DCH (△ABD = △ACE)
=> △HEB = △HDC (cgv-gnk)
=> BH = HC (2 cạnh tương ứng)
=> △BHC cân tại H
c, Vì AE = AD (cmt) => △AED cân tại A => AED = (180o - EAD) : 2
Vì △ABC cân tại A (gt) => ABC = (180o - BAC) : 2
=> AED = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> DE // BC (dhnb)
d, Xét △BAH và △CAH
Có: AB = AC (cmt)
ABH = ACH (cmt)
AH là cạnh chung
=> △BAH = △CAH (c.g.c)
=> BAH = CAH (2 góc tương ứng)
Xét △ABK và △ACK
Có: AB = AC (cmt)
BAK = CAK (cmt)
AK là cạnh chung
=> △ABK = △ACK (c.g.c)
=> BK = CK (2 cạnh tương ứng)
Xét △BHK và CMK
Có: HK = MK (gt)
HKB = MKC (2 góc đối đỉnh)
BK = CK (cmt)
=> △BHK = △CMK (c.g.c)
=> HBK = MCK (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> BH // MC (dhnb)
=> BD // MC (H BD)
Mà BD ⊥ AC (gt)
=> MC ⊥ AC (từ vuông góc song song)
=> ACM = 90o
=> △ACM vuông tại C
Câu 1:
A B C H D
a) So sánh ∠B và ∠C ?
Vì AB < AC (gt) ⇒ ∠C < ∠B
b) So sánh BH và CH ?
Trên ta BC lấy điểm D sao cho BH = HD
Xét hai tam giác vuông ABH và ADH có:
BH = DH (gt)
AH : cạnh chung
Do đó: ΔABH = ΔADH (hai cạnh góc vuông)
⇒ BH = HD (hai cạnh tương ứng)
Mà CH = CD + DH ( do D nằm giữa H và C)
⇒ CH > BH .
Câu 2 để tớ đi học về rồi làm cho ~