Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔOBC cân tại O
mà OM là đường trung tuyến
nên OM⊥BC tại M
M là trung điểm của BC
=>\(MB=MC=\frac{BC}{2}=\frac{R\sqrt3}{2}\)
Xét ΔOMB vuông tại M có \(cosOBM=\frac{BM}{OB}=\frac{R\sqrt3}{2}:R=\frac{\sqrt3}{2}\)
nên \(\hat{OBM}=30^0\)
ΔOBC cân tại O
=>\(\hat{BOC}=180^0-2\cdot\hat{OBC}=180^0-2\cdot30^0=120^0\)
b: N đối xứng O qua BC
=>BC là đường trung trực của ON
=>BC⊥ON tại trung điểm của ON
mà BC⊥OM
và ON và OM có điểm chung là O
nên O,M,N thẳng hàng
=>BC cắt ON tại M
=>M lả trung điểm của ON
ΔCOM vuông tại M
=>\(\hat{COM}+\hat{MCO}=90^0\)
=>\(\hat{COM}=90^0-30^0=60^0\)
Xét tứ giác BOCN có
M là trung điểm chung của CB và ON
=>BOCN là hình bình hành
Hình bình hành BOCN có OB=OC
nên BOCN là hình thoi
=>OC=CN
Xét ΔONC có OC=CN và \(\hat{NOC}=60^0\)
nên ΔONC đều
=>ON=OC
=>N cũng thuộc (O)
c: Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>CD⊥CA
mà BH⊥CA
nên BH//CD
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>BD⊥BA
mà CH⊥BA
nên CH//BD
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
d: Xét ΔABC có
BE,CF là các đường cao
BE cắt CF tại H
Do đó: H là trực tâm của ΔABC
=>AH⊥BC
mà OM⊥BC
nên OM//AH
BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HD
Xét ΔHAD có
O,M lần lượt là trung điểm của DA,DH
=>OM là đường trung bình của ΔHAD
=>\(OM=\frac12AH\)
e:
Xét (O) có \(\hat{BAC}\) là góc nội tiếp chắn cung BC
nên \(\hat{BAC}=\frac12\cdot\hat{BOC}=\frac12\cdot120^0=60^0\)
ABDC nội tiếp
=>\(\hat{BAC}+\hat{BDC}=180^0\)
=>\(\hat{BDC}=180^0-60^0=120^0\)
Ta có: BHCD là tứ giác nội tiếp
=>\(\hat{BHC}=\hat{BDC}\)
=>\(\hat{BHC}=120^0\)
Xét tứ giác BHOC có \(\hat{BHC}=\hat{BOC}\left(=120^0\right)\)
nên BHOC là tứ giác nội tiếp
=>B,H,O,C cùng thuộc một đường tròn

A B C E F H O I K
a) Nối HK; BK; CK
+) Góc ACK ; góc ABK là góc nội tiếp chắn nửa đường tròn (O;R) => góc ACK = 90o ; góc ABK = 90o
=> AB | BK; AC | CK
Mà AB | CF; AC | BE nên CF // BK ; BE // CK => T/g BHCK là hình bình hành => 2 đường chéo BC ; HK cắt nhau tại trung điểm của mỗi đường
Mà I là trung điểm của BC => I là trung điểm của HK
+) Xét tam giác AKH có: O; I là trung điểm của AK; HK => OI là đường trung bình của tam giác AKH => AH = 2.OI
b) +) Góc BAC là nội tiếp chắn cung BC => Góc BAC = 1/2 góc BOC ( Mối liên hệ giữa góc ở tâm và góc nội tiếp)
=> góc BOC = 2.60o = 120o . Mà tam giác BOC cân tại O ; OI là đường trung tuyến nên đồng thời là đường p/g và đường cao
=> góc BOI = 1/2 góc BOC = 60o
+) Xét tam giác vuông BIO có: BI = OB.sin BOI = R. sin 60o = \(\frac{R\sqrt{3}}{2}\) => BC = 2.BI = \(R\sqrt{3}\)
Vậy....