K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

c) Do tứ giác AEDC là tứ giác nội tiếp nên ∠(CAB) = ∠(IDB) (cùng bù ∠(CDE) )

Mặt khác ∠(CAB) = ∠(CMB) (2 góc nội tiếp cùng chắn cung BC)

⇒ ∠(CMB) = ∠(IDB)

⇒ Tứ giác CMID là tứ giác nội tiếp ( Góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối của đỉnh đó)

17 tháng 9 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tứ giác AEDC có:

∠(AEC) = ∠(ADC) =  90 0

Mà 2 góc này cùng nhìn cạnh AC

⇒ Tứ giác AEDC là tứ giác nội tiếp

a) Xét tứ giác AEDC có 

\(\widehat{AEC}=\widehat{ADC}\left(=90^0\right)\)

\(\widehat{AEC}\) và \(\widehat{ADC}\) là hai góc cùng nhìn cạnh AC

Do đó: AEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

25 tháng 2 2018

Kẻ hình đi bạn

25 tháng 2 2018

mik ko bt vẽ trên máy

28 tháng 7 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Xét ΔABD và Δ CEB có:

∠(ABC) chung

∠(ADB) = ∠(CEB) =  90 0

⇒ ΔABD ∼ Δ CBE (g.g)

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tứ giác BNHM có 

\(\widehat{BNH}\) và \(\widehat{BMH}\) là hai góc đối

\(\widehat{BNH}+\widehat{BMH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BNHM là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

2 tháng 4 2021

cậu ơi b,c luôn được không cậu

9 tháng 5 2021

giúp mình câu b với các bạn ơi

 

1.

Chứng minh được \widehat{CEB} = \widehat{BDC} = 90^{\circ}CEB=BDC=90.

Suy ra 44 điểm B,E, D, CB,E,D,C cùng thuộc đường tròn đường kính CBCB nên tứ giác BCDEBCDE nội tiếp.

Có tứ giác BCDEBCDE nội tiếp nên \widehat{DCE} = \widehat{DBE}DCE=DBE (22 góc nội tiếp cùng chắn cung DEDE) hay \widehat{ACQ} = \widehat{ABP}ACQ=ABP.

Trong đường tròn tâm (O)(O), ta có \widehat{ACQ}ACQ là góc nội tiếp chắn cung AQAQ và \widehat{ABP}ABP nội tiếp chắn cung APAP

\Rightarrow \overset{\frown}{AQ}=\overset{\frown}{AP}AQ=AP.

2.

(O)(O) có \overset{\frown}{AQ}=\overset{\frown}{AP}