\(\perp\)AB; MH<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2019

Câu hỏi của Khánh Đoàn Quốc - Toán lớp 9 - Học toán với OnlineMath

mik ko bít

I don't now

................................

.............

5 tháng 7 2021

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)có :

\(C\ge\frac{4}{1+\left(a+b\right)^2}\ge\frac{4}{1+1}=2\)

Dấu = khi a=b=1/2

1 tháng 9 2017

em thấy những bn tài năng đều rời xa h24 vì đầu bài thường hay viết sai

29 tháng 8 2017

2) Sửa lại là: HE.AB+HF.BC=AH.BC

20 tháng 6 2019

A B C H I K M

a, Áp dụng định lí Pytago vào câc tam giác vuông ta được

\(AK^2+BH^2+CI^2=AM^2-MK^2+BM^2-MH^2+CM^2-MI^2\)

                                       \(=\left(AM^2-MI^2\right)+\left(BM^2-MK^2\right)+\left(CM^2-MH^2\right)\)

                                         \(=AI^2+BK^2+CH^2\)

b, Đặt \(P=AK^2+BH^2+CI^2\)

\(\Rightarrow2P=\left(AK^2+BH^2+CI^2\right)+\left(AK^2+BH^2+CI^2\right)\)

             \(=\left(AK^2+BH^2+CI^2\right)+\left(AI^2+CH^2+BK^2\right)\)

             \(=\left(AK^2+BK^2\right)+\left(BH^2+HC^2\right)+\left(CI^2+IA^2\right)\)

Ta có bđt sau \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)(tự chứng minh)

Áp dụng ta được \(2P\ge\frac{\left(AK+BK\right)^2}{2}+\frac{\left(BH+HC\right)^2}{2}+\frac{\left(CI+IA\right)^2}{2}\)

                                   \(=\frac{AB^2}{2}+\frac{BC^2}{2}+\frac{CA^2}{2}=\frac{AB^2+BC^2+CA^2}{2}\)

\(\Rightarrow P\ge\frac{AB^2+BC^2+CA^2}{4}\)không đổi

Dấu "=" xảy ra <=> M là giao điểm 3 đường trung trực của tam giác ABC