K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vẽ đường cao BK từ B xuống  AC với B thuộc AC

ta có : sin góc bac = BK/AB

suy ra : 1/2*AB*AC*sinA = 1/2*AB*AC*(BK/AB) = 1/2*BK*AC = SABC ( đccm )

Chú ý : * là nhân nhé. Bạn tự vẽ hình

Nhớ k cho mình nha

18 tháng 10 2016

Đọc đề không hiểu. Bạn sửa lại cho đúng đi

18 tháng 10 2016

cái này bạn cứ tính sin A đi là được nhé

12 tháng 3 2017

Xét tam giác ABC vuông tại A có AD vuông góc với BC

=> AB2B=DC.BC; AC2=DC.BC

tam giác ABD vuông tại D có DF vuông góc với AB =>BD2=BF.AB

Tương tự DC2=CE.AC

Ta có \(\dfrac{AC^2}{AB^2}\)=\(\dfrac{DC.BC}{DB.BC}\)=\(\dfrac{DC}{DB}\)

=> \(\dfrac{AC^4}{AB^4}\)= \(\dfrac{DC^2}{DB^2}\)=\(\dfrac{CE.AC}{BF.AB}\)

=>\(\dfrac{AC^3}{AB^3}\)=\(\dfrac{CE}{BF}\)

12 tháng 3 2017

2/ gọi E là giao của BH với AC; F là giao của CH với AB

=>BE vuông góc với AC; CF vuông góc với AB

Xét tam giác AC1B có C1F vuông góc với AB =>AC12=AF.AB (1)

Tương tự AB12=AE.AC (2)

C/m tam giác AEB đồng dạng với tam giác AFC (g.g)

=> \(\dfrac{AE}{AF}\)=\(\dfrac{AB}{AC}\) => AE.AC=AF.AB (3)

Từ (1);(2) và (3) => AB1=AC1