K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2019

45 60 a x A B C H K

a) Kẻ đường cao BK

 Ta có: 

\(\sin\widehat{A}=\frac{BK}{AB};\cos\widehat{A}=\frac{AK}{AB}\)

=> \(\sin\widehat{A}+\cos\widehat{A}=\frac{BK}{AB}+\frac{AK}{AB}=\frac{AK+BK}{AB}>\frac{AB}{AB}=1\)

b) Kẻ đường cao AH.

Đặt BH = x => HC = a - x.  

+) Tam giác AHB vuông cân => AH = BH =x  (1) 

+) Tam giác AHC có \(\tan\widehat{ACH}=\frac{AH}{HC}\Rightarrow\tan60^o=\frac{AH}{a-x}\Rightarrow AH=\sqrt{3}\left(a-x\right)\) (2)

Từ (1) ; (2) => \(x=\sqrt{3}\left(a-x\right)\Rightarrow x=\frac{\sqrt{3}a}{1+\sqrt{3}}\)

=> \(AH=\frac{\sqrt{3}a}{1+\sqrt{3}}\)

=> \(S_{\Delta ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.\frac{\sqrt{3}a}{1+\sqrt{3}}.a=\frac{3-\sqrt{3}}{4}a^2\)

Bài 2: 

b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)

\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)

\(=AH\cdot\dfrac{BC}{AH}=BC\)