Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Cảm ơn bạn nhiều, mình vừa mới mò ra cách giải câu b trong vòng 1 ngày, rất là ngắn gọn!
b) Dễ dàng thấy tam giác ADG và tam giác AQG bằng nhau theo trường hợp cạnh góc cạnh
Suy ra AQG^ = 90 độ
Suy ra QG// HE, suy ra đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
vẽ hình
a xét tam giác ABD và tam giác ACE có :
chung góc BAC
góc BDA = góc CEA = 90 độ
=> tam giác ABD đồng dạng tam giác ACE (g.g)
b, xét tam giác EHB và tam giác DHC có
góc BDC = góc CFB = 90 độ
góc BHF = góc DHC ( đối đỉnh )
=> tam giác EHB đồng dạng với tam giác DHC (g.g)
=> \(\frac{HB}{HC}=\frac{HE}{HD}\)
=> HD . HB = HE . HC ( đpcm )
c, vì tam giác ABD đồng dạng với tam giác ACE ( câu a)
=> \(\frac{AB}{AC}=\frac{AD}{AE}\) => \(\frac{AE}{AC}=\frac{AD}{AB}\)
xét tam giác ADE và tam giác ABC có
chung góc BAC
\(\frac{AE}{AC}=\frac{AD}{AB}\)
=> tam giác ADE đồng dạng với tam giác ABC ( c.g.c)
=> góc ADE = góc ABC ( đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, chứng minh tam giác EHB và tam giác DHC đồng dạng theo trường hợp G-G
chứng minh được HE/HD=HB/HC
xét tam giác EHD và tam giác BHC có: 2 cạnh tỉ lệ trên= nhau và góc EHD = góc BHC( đđ)
suy ra 2 tam giác đồng dạng
suy ra 2 góc cần cm bằng nhau
Cho tam giác ABC, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và vuông góc với AC tại C cắt nhau ở K. Gọi M là trung điểm của BC.
a)Chứng minh tam giác ADB đồng dạng tam giác AEC
Xét tam giác ABD và tam giác ACE có
góc ABD= góc AEC (=90 độ)
góc A: chung
=> tam giác ABD đồng dạng tam giác AEC (g.g)
b) Cm :HE.HC=HD.HB
Xét tam giác HEB và tam giác HDC có
góc HEB= góc HDC (=90 độ)
góc EHB= góc DHC ( đối đỉnh)
=>tam giácHEB đồng dạng tam giác HDC(g.g)
=>HE/HD=HB/HC
<=> HE.HC= HD.HB
c) Cm: H,M,K thẳng hàng
Có BD vuông góc AC
CK vuông góc AC
=> BD song song CK hay BH song song CK
Có CE vuông góc AB
BK vuông góc AB
=> CE song song BK hay CH song song BK
Tứ giác BHCK có BH song song CK
CH song song BK
=> BHCK là hbh ( dhnb)
Mà M là trung điểm của đg chéo BC
=> M cũng là trung điểm của đg chéo HK
=> H,M,K thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
A B c M N P
Xét \(\Delta ABN\) và \(\Delta ACP\) có
^\(BAN=\) ^\(CAP\) (góc chung)
^\(ANB=\) ^\(APC\) (\(=90^o\) )
\(\Rightarrow\Delta ABN~\Delta ACP\left(g.g\right)\)
\(\Rightarrow\frac{AB}{AC}=\frac{AN}{AP}\Rightarrow AB.AP=AN.AC\)
Vậy ....
B,
Từ \(\frac{AB}{AC}=\frac{AN}{AP}\Rightarrow\frac{AP}{AC}=\frac{AN}{AB}\)
Xét \(\Delta APNv\text{à}\Delta ACB\)
^\(PAN=\) ^\(CAP\) (góc chung)
\(\frac{AP}{AC}=\frac{AN}{AB}\) (CMT)
\(\Rightarrow\Delta APN~\Delta ACB\left(c.g.c\right)\)
\(\Rightarrow\) ^\(APN=\) ^\(ACP\) (2 GÓC TƯƠNG ỨNG)
KL....( nhớ k cho mk nha)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Có góc A chung và 2 góc vuông => ĐPCM
b) Xét EHB và DHC có:
2 góc vuông và 2 góc đối đỉnh EHB và DHC
=> EHB đồng dạng với DHC
=>BH/CH=EH/DH
=>BH.DH=EH.CH
c)Từ câu a ta suy ra được tỉ số : AB/AC=AD/AE
và có góc A chung .
Từ đó suy ra: ADE đồng dạng với ABC
=> góc ADE= góc ABC
d) Ta có IO là đường trung bình ( tự chứng minh )
=> IO//AH => AHM đồng dạng với IOM
Tỉ số cạnh = AM/IM =2 ( do là đường trung bình )
Tỉ số diện tích của AHM so với IOM là 22=4
Vậy SAHM=4.SIOM