Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tam giác BDH và tam giác BEC có: góc B chung ; góc BDH = góc BEC = 90
=> tam giác BDH đồng dạng với tam giác BEC (g-g)
=> BD/BE = BH/BC => BD/BH = BE/BC
Xét tam giác BED và tam giác BCH có: góc B chung; BD/BH = BE/BC (cmt)
=> tam giác BED đồng dạng với tam giác BCH (c-g-c)
b)Xét tam giác BFH và tam giác CEH có: BFH = CEH = 90; BHF = CHE (đối đỉnh)
=> tam giác BFH đồng dạng với tam giác CEH (g-g)
=> FH/EH = BH/CH => FH/BH = EH/CH
Xét tam giác FEH và tam giác BCH có: FHE = BHC (đối đỉnh); FH/BH = EH/CH (cmt)
=> tam giác FEH đồng dạng với tam giác BCH (c-g-c)
=> FEH = BCH hay MEH = BCH(1)
VÌ tam giác BED đồng dạng với tam giác BCH (cmt) => BED = BCH hay HEN = BCH(2)
Từ (1),(2)=> MEH = HEN
Xét tam giác MHE và tam giác NHE có: HME = HNE =90; HE chung ; MEH = NEH(cmt)
=> tam giác MHE bằng tam giác NHE (ch-gn)
=> HM = HN(2 cạnh tương ứng)
còn câu c) mình chưa làm được, bạn làm được chưa ? làm giùm mình với
a, Xét \(\Delta ACF\) và \(\Delta ABE\) có:
\(\widehat{AFC}=\widehat{AEB}=90^0\)
\(\widehat{BAC}\) là góc chung
\(\Rightarrow\Delta ACF~\Delta ABE\left(g.g\right)\)
\(\Rightarrow\frac{AC}{AB}=\frac{AF}{AE}\)
\(\Rightarrow AC.AE=AB.AF\)
Xét \(\Delta AEF\) và \(\Delta ABC\) có:
\(\widehat{CAB}\) là góc chung
\(\frac{AE}{AB}=\frac{AF}{AC}\)
\(\Rightarrow\Delta AEF~\Delta ABC\left(c.g.c\right)\)
b, Xét \(\Delta BDH\) và \(\Delta BEC\) có:
\(\widehat{EBC}\) là góc chung
\(\widehat{BEC}=\widehat{BDH}=90^0\)
\(\Rightarrow\Delta BDH~\Delta BEC\left(g.g\right)\)
\(\Rightarrow\frac{BH}{BC}=\frac{BD}{BE}\)
\(\Rightarrow BE.BH=BC.BD\left(1\right)\)
Tương tự như trên ta được: \(\Delta CDH~\Delta CFB\left(g.g\right)\)
\(\Rightarrow\frac{CH}{CB}=\frac{CD}{CF}\)
\(\Rightarrow CF.CH=CD.CB\left(2\right)\)
Từ (1) và (2) \(\Rightarrow BE.BH+CH.CF=BD.BC+BC.CD=BC\left(BD.CD\right)=BC^2\)
\(\Rightarrow BH.BE+CH.CF=BC^2\)
d,EI _|_ AB ; CE _|_ AB => EI // CE => AI/IF = AE/EC (đl)
EK _|_ AD; CD _|_ AD => EK // CD => AK/KD = AE/EC (đl)
=> AI/IF = AK/KD; xét tam giac AFD
=> IK // FD (1)
ER _|_ BC; AD _|_ BC => ER // AD => CR/RD = CE/EA (đl)
EQ _|_ CF; AF _|_ CF => AH // AF => CH/FH = CE/AE (đl)
=> CR/RD = CH/FH; xét tam giác CFD
=> HR // FD (2)
EK _|_ AD; AD _|_ BD => EK // BD => KH/HD = EH/HB (đl)
EH _|_ CF; CF _|_ BF => EH // FB => EH/HB = QH/HF (đl)
=> KH/HD = QH/HF
=> KH // ED (3)
(1)(2)(3) => I;K;H;R thẳng hàng (tiên đề Ơclit)