Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : sin\(^2\)12o=cos278o=> sin212o+sin278o=1.
tương tự => A=3
b) tương tự câu (a) ta có: cos215o=sin275o ( do 15+75=90 nha bạn ) => cos215o+cos275o=1. Tương tự => B=0
a)
\(\Delta EAB\) ~ \(\Delta FAC\) (g - g)
\(\Rightarrow\dfrac{EA}{FA}=\dfrac{AB}{AC}\)
\(\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
\(\Rightarrow\Delta AEF\) ~ \(\Delta ABC\)
\(\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\dfrac{AE^2}{AB^2}=\cos^2A\)
\(\Rightarrow S_{AEF}=\cos^2A\left(S_{ABC}=1\right)\) (1)
Chứng minh tương tự, ta có: \(S_{BFD}=\cos^2B\) (2) và \(S_{CDE}=\cos^2C\) (3)
Cộng theo vế của (1) , (2) và (3) => đpcm
b)
\(S_{DEF}=S_{ABC}-\left(S_{AEF}+S_{BFD}+S_{CDE}\right)\text{ }\)
\(=1-\cos^2A-\cos^2B-\cos^2C\)
\(=\sin^2A-\cos^2B-\cos^2C\) (đpcm)
a) Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=\left(90^0\right)\)
=> BFEC là tứ giác nội tiếp
=> \(\widehat{FEC}+\widehat{ABC}=180^0\)( đpcm )
b) \(tanB\cdot tanC=\frac{AD}{BD}\cdot\frac{AD}{CD}=\frac{AD^2}{BD\cdot CD}\)
Cần chứng minh : \(\frac{AD^2}{BD\cdot DC}=\frac{AD}{HC}=\frac{AD^2}{HC\cdot DC}\)
\(\Leftrightarrow BD\cdot DC=HC\cdot DC\)
Điều này luôn đúng do tam giác ABD đồng dạng với tam giác HDC
Tạm 2 câu trước, đợi mình chút
c) Vì ΔABC~ΔAEF nên \(\frac{S_{ABC}}{S_{AEF}}=\frac{AB^2}{AE^2}\) (1)
\(cos^2A=\frac{AE^2}{AB^2}\) (2)
Từ (1) và (2) suy ra : \(\frac{S_{ABC}}{S_{AEF}}.cos^2A=1\)
⇔ \(S_{AEF}=S_{ABC}.cos^2A\)
d) Do \(\widehat{A}=45^0\) nên tam giác AEB và AFC vuông cân lần lượt tại E và F.
⇔ \(\frac{AE}{AB}=\frac{AF}{AC}=\frac{1}{\sqrt{2}}\)
⇔ \(\frac{EF}{BC}=\frac{1}{\sqrt{2}}\) ⇔ \(EF=\frac{BC}{\sqrt{2}}=\frac{10}{\sqrt{2}}=5\sqrt{2}\)cm
e) Do tam giác ABC nhọn nên
\(S_{ABC}=S_{AEF}+S_{BDF}+S_{CED}+S_{DEF}\)
Dễ chứng minh ΔBDF~ΔBAC; ΔCED~ΔCBA
Ta có: \(cos^2A+cos^2B+cos^2C=\frac{AE^2}{AB^2}+\frac{BF^2}{BC^2}+\frac{CD^2}{CA^2}\)
\(=\frac{S_{AEF}}{S_{ABC}}+\frac{S_{BDF}}{S_{ABC}}+\frac{S_{CDE}}{S_{ABC}}< \frac{S_{AEF}+S_{BDF}+S_{CDE}+S_{DEF}}{S_{ABC}}=1\)
Vậy ....
a. Ta có : \(\frac{S_{AEF}}{S_{ABE}}=\frac{AF}{AB};\frac{S_{AEB}}{S_{ABC}}=\frac{AE}{AC}\)
Như vậy \(\frac{S_{AEF}}{S_{ABC}}=\frac{AF}{AB}.\frac{AE}{AC}=\frac{AE}{AB}.\frac{AF}{AC}=cosA.cosA=cos^2A.\)
Từ đó ta có : \(S_{AEF}=S_{ABC}.cos^2A\)
b. Tương tự phần a ta có : \(S_{BEF}=S_{ABC}.cos^2B\); \(S_{CEF}=S_{ABC}.cos^2C\)
Như vậy \(S_{DEF}=S_{ABC}-S_{AEF}-S_{BEF}-S_{CEF}\)
Từ đó ta có: \(\frac{S_{DEF}}{S_{ABC}}=1-\left(cos^2A+cos^2B+cos^2C\right)\)
Chúc em học tốt :)))