K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2019

a) Xét tam giác AHC và tam giác AHD:

AH chung ; góc AHC = góc AHD (=90 độ) ; HC=HD (theo gt)

Vậy tam giác AHC bằng tam giác AHD (cgc)

b) Vì tam giác AHC bằng tam giác AHD (cgc) nên AC=AD (hai cạnh tương ứng)

Mà có M là trung điểm của AC, N là trung điểm của AD suy ra AM=AN

Xét tam giác AMN có AM=AN (cmt) nên tam giác AMN cân tại A.

Còn phần c) thì hình như bạn ghi nhầm đề bài hay sao ấy (?)

11 tháng 5 2019

mik vẽ hình hơi xấu thông cảm

a) bạn tự cm nhé

b.theo a có tam giác AHD=tam giác AHC(c-g-c)=>AD=AC(2 cạnh TƯ)

=>1/2AD=1/2AC=>AN=AM

=>t/giác ANM cân tại A(đpcm)

c.Vì N là trung điểm của AD=>ND=NA=>CN là trung tuyến t/giác ADC(1)

Vì M là trung tuyến của t/giác ADC(2)

vì HD=HC=> AH là trung tuyến t/giác ADC(3)

từ (1),(2),(3)=>AH,CN,DM cắtt nhau tại 1 điểm

mà CN giao DM={E}=>AH,CN,DM cắt nhau tại E=>E thuộc AH=>A,E,H là 3 điểm thẳng hàng(đpcm)

k nha

11 tháng 5 2019

A B C H D N M

Xét \(\Delta AHC\)và \(\Delta AHD\)ta có:

       HC = HD (gt)

        AH chung

    \(\widehat{DAH}=\widehat{CAH}=90^o\)

\(\Rightarrow\Delta AHC=\Delta AHD\left(c.g.c\right)\)

Vậy ...

11 tháng 5 2019

Cần giải gấp câu b và c ạ

Sửa đề: ΔABC vuông tại C

a) Xét ΔAHC vuông tại H và ΔAHD vuông tại H có 

AH chung

HC=HD(gt)

Do đó: ΔAHC=ΔAHD(hai cạnh góc vuông)

Bài 1:Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EMa) Chứng minh ( CM ) : tam giác ABM = tam giác ACMb) CM : AM vuông góc BCc) CM : tam giác AEH = tam giác CEMd) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm...
Đọc tiếp

Bài 1:

Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EM

a) Chứng minh ( CM ) : tam giác ABM = tam giác ACM

b) CM : AM vuông góc BC

c) CM : tam giác AEH = tam giác CEM

d) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm H, A, K thẳng hàng

 

Bài 2:

Cho tam giác ABC có góc B < 90 độ. Trên nửa mặt phẳng bờ BC chứa điểm A vẽ tia Bx khác BC, trên tia Bx lấy điểm D sao cho BD = BC. Trên nửa mặt phẳng bờ AB chứa điểm C vẽ tia By vuông góc với BA, trên tia By lấy E sao cho BE = BA

a) CMR : DA = EC

b) DA vuông góc EC

 

Bài 3:

Cho tam giác ABC vuông tại B và AC = 2AB. Kẻ phân giác AE ( E thuộc BC ) của góc A

a) CM : EA = EC

b) Tính góc A và góc C của tam giác ABC

 

GIÚP TỚ VỚI Ạ. TỚ ĐANG CẦN!!

4
6 tháng 1 2018

Bài 1:

K D A H E B M C

a) Xét tam giác ABM và tam giác ACM : AB=AC,AM chung ,BM=MC(vì M là trung điểm của BC gt)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

b) Tam giác ABC có AB=AC nên tam giác ABC cân tại A

=> đường trung tuyến AM đồng thời là đường cao

Vậy AM vuông góc BC

c) Xét tam giác AEH và tam giác CEM : AE=EC,EH=EM,\(\widehat{AEH}=\widehat{CEM}\)(2 góc đối đỉnh)

\(\Rightarrow\Delta AEH=\Delta CEM\left(c.gc\right)\)

d) Ta có KB//AM(vì vuông góc với BM 

\(\Rightarrow\widehat{KBD}=\widehat{DAM}\)(2 góc ở vị trí so le trong)

Xét tam giác KDB và MDA (2 góc đối đỉnh)

\(\Rightarrow\Delta KDB=\Delta DAM\left(g.c.g\right)\)

\(\Rightarrow KD=DM\left(1\right)\)

Tam giác ABM vuông tại M có trung tuyến MD 

Nên : MD=BD=AD(2)

Từ (1) và (2) ta có : KD=DM=DB=AD

Tam giác KAM có trung tuyến ứng với cạnh KM là \(AD=\frac{AM}{2}\)

Nên : Tam giác KAM vuông tại A

Tương tự : Tam giác MAH vuông tại A

Ta có: Qua1 điểm A thuộc AM  có 2 đường KA và AH cùng vuông góc với AM 

Nên : K,A,H thẳng thàng

6 tháng 1 2018

Bài 2 : 

x D A B C E y

a) Ta có tam giác DAB=tam giác CEB(c.g.c)

Do : DA=CB(gt)

       BE=BA(gt)

       \(\widehat{DBA}=\widehat{CBE}\)(Cùng phụ \(\widehat{ABC}\))

=> DA=EC

b) Do tam giác DAB=tam giác CEB(ở câu a) 

=> \(\widehat{BDA}=\widehat{BCE}\Rightarrow\widehat{BDA}+\widehat{BCD}=\widehat{BCE}+\widehat{BCD}\)

Mà : \(\widehat{BDA}+\widehat{BCD}=90^0\)( Do Bx vuông góc BC) 

=> \(\widehat{BCE}+\widehat{BCD}=90^0\)

=> DA vuông góc với EC

13 tháng 8 2017

bn cho nhìu wá

13 tháng 8 2017

@Hoàng Thị Tuyết Nhung bạn làm giúp mình câu 1 thôi nha