Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất đường phân giác trong tam giác ta có :\(\frac{IA}{ID}=\frac{AC}{CD}\)
Mà \(\frac{AC}{CD}=\frac{AB}{BD}\) \(\frac{\Rightarrow IA}{ID}=\frac{AC}{CD}=\frac{AB}{BD}=\frac{AC+AB}{CD+BD}=\frac{AC+AB}{BC}\)
a.) từ các tia phân giác suy ra được OE/OB=AE/AB=EC/BC
suy ra AE/c=EC/a
áp dụng tính chất dãy tỉ số bằng nhau ta có :
AE/c=EC/a=AE+EC/c+a=AC/c+a=b/c+a
suy ra AE=bc/c+a
tương tự ta có AF=bc/a+b
ta có OB/OE=AB/AE=c/AE
suy ra OB/OE+OB=c/AE+c (ko bik bạn học cái này chưa)
OB/BE=c/AE+c(1)
tương tự ta lại có OC/CF=b/AF+b(2)
từ (1) và (2) suy ra OB.OC/BE.CF=bc/(AE+c)(AF+b)=1/2
nhân chéo ta có 2bc=(AE+c)(AF+b)=(bc/(c+a)+c)(bc/(a+b)+b)
2bc=(c(a+b+c)/(a+c))(b(a+b+c)/(a+b))
2bc=bc(a+b+c)^2/(a+c)(a+b)
2=(a+b+c)^2/(a+c)(a+b)
suy ra (a+b+c)^2=2(a+c)(a+b)
tách ra rút gọn còn a^2=b^2+c^2
suy ra tam giác ABC vuông tại A
A C B M N I
Qua I vẽ đường thẳng vuông góc với CI cắt AC. BC lần lượt tại M, N. Khi đó CM=CN, IM=IN.
Ta chứng minh được \(\widehat{AIB}=180-\widehat{BAI}-\widehat{ABI}=180-\frac{BAC}{2}-\frac{ABC}{2}=\frac{360-\left(ABC+BÃC\right)}{2}\)
\(=\frac{360-180+ACB}{2}=90+\frac{ACB}{2}\)
\(AMI=180-CMN=180-\frac{180-ACB}{2}=\frac{360-180+ACB}{2}=90+\frac{ACB}{2}\)
Chứng minh tương tự ta cũng có: \(BNI=90+\frac{ACB}{2}\)
Từ đó suy ra: \(\Delta AIB\infty\Delta AMI\left(g.g\right)\Rightarrow\frac{AI}{AM}=\frac{AB}{AI}\Rightarrow AI^2=AB.AM\Rightarrow\frac{AI^2}{AB.AC}=\frac{AM}{AC}\)
\(\Delta AIB\infty\Delta INB\left(g.g\right)\Rightarrow\frac{BI}{IN}=\frac{AB}{BN}\Rightarrow BI^2=AB.BN\Rightarrow\frac{BI^2}{AB.BC}=\frac{BN}{BC}\)
\(\Delta AMI\infty\Delta INB\Rightarrow\frac{AM}{IN}=\frac{IM}{BN}\Rightarrow AM.BN=IM.IN=IM^2\)
Áp dụng định lí Py- ta-go vào tam gác ICM ta có:
\(IM^2+CI^2=CM^2\Rightarrow BN.AM+CI^2=CM.CN\Rightarrow BN.AM+CN.AM+CI^2=CM.CN+CN.AM\)
\(\Rightarrow BC.AM+CI^2=CN.AC\Rightarrow BC.AM+CI^2+AC.BN=CN.AC+AC.BN\)
\(\Rightarrow BC.AM+BN.AC+CI^2=AC.BC\Rightarrow\frac{AM}{AC}+\frac{BN}{BC}+\frac{CI^2}{AC.BC}=1\)
\(\Rightarrow\frac{AI^2}{AB.AC}+\frac{BI^2}{BA.BC}+\frac{CI^2}{CA.CB}=1\)
a) Áp dụng định lý pitago vào tam giác vuông ABC ( gt )
⇒Bc=10(cm)⇒Bc=10(cm)
Tacó: DC/DA=BC/BA=10/6=5/3⇒DC/DC+DA=5/5+3.DC/DA=BC/BA=10/6=5/3⇒DC/DC+DA=5/5+3⇒DC/8=58⇒DC=8.58=5(cm)⇒DC/8=5/8⇒DC=8.5/8=5(cm)
⇒AD=AC−DC=8−5=3(cm)