Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi giao của AH với BC là E
=>AH vuông góc BC tại E
Xét ΔBIC vuông tại I và ΔBEA vuông tại E có
góc EBA chung
=>ΔBIC đồng dạng với ΔBEA
=>BI/BE=BC/BA
=>BE*BC=BA*BI
Xét ΔCKB vuông tại K và ΔCEA vuông tại E có
góc KCB chung
=>ΔCKB đồng dạng với ΔCEA
=>CK/CE=CB/CA
=>CK*CA=CE*CB
BI*BA+CK*CA
=BE*BC+CE*BC
=BC^2
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét ΔABK vuông tại K và ΔACI vuông tại I có
\(\widehat{BAK}\) chung
Do đó: ΔABK∼ΔACI(g-g)
Suy ra: \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AI\cdot AB=AK\cdot AC\)(đpcm)
b) Ta có: \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\)(cmt)
nên \(\dfrac{AK}{AB}=\dfrac{AI}{AC}\)
Xét ΔAIK và ΔACB có
\(\dfrac{AK}{AB}=\dfrac{AI}{AC}\)(cmt)
\(\widehat{IAK}\) chung
Do đó: ΔAIK\(\sim\)ΔACB(c-g-c)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C H
\(\text{Xét tam giác ABC và tam giác HBA,có:}\)
\(\widehat{A}=\widehat{H}=90^0\)
\(\widehat{B}\)\(\text{chung}\)
\(\text{Vậy tam giác ABC~tam giác HBA(g.g) }\)
\(\Rightarrow\frac{AB}{HB}=\frac{BC}{AB}\Rightarrow AB^2=HB.BC\)
B.cHỨNG MINH TƯƠNG TỰ
b) xét tam giác HAB và tam giác HCA ,có:
góc BHA = góc CHA (=90)
góc BAH = góc HCA (cùng phụ B)
nên tam giác HAB ~ tam giác HCA
=> HA/HB = HC/HA
=> HA2 = HC.HB