K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi giao của AH với BC là E

=>AH vuông góc BC tại E
Xét ΔBIC vuông tại I và ΔBEA vuông tại E có

góc EBA chung

=>ΔBIC đồng dạng với ΔBEA

=>BI/BE=BC/BA

=>BE*BC=BA*BI

Xét ΔCKB vuông tại K và ΔCEA vuông tại E có

góc KCB chung

=>ΔCKB đồng dạng với ΔCEA

=>CK/CE=CB/CA

=>CK*CA=CE*CB

BI*BA+CK*CA

=BE*BC+CE*BC

=BC^2

a) Xét ΔABK vuông tại K và ΔACI vuông tại I có 

\(\widehat{BAK}\) chung

Do đó: ΔABK∼ΔACI(g-g)

Suy ra: \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AI\cdot AB=AK\cdot AC\)(đpcm)

b) Ta có: \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\)(cmt)

nên \(\dfrac{AK}{AB}=\dfrac{AI}{AC}\)

Xét ΔAIK và ΔACB có 

\(\dfrac{AK}{AB}=\dfrac{AI}{AC}\)(cmt)

\(\widehat{IAK}\) chung

Do đó: ΔAIK\(\sim\)ΔACB(c-g-c)

5 tháng 4 2017

A B C H

\(\text{Xét tam giác ABC và tam giác HBA,có:}\)

\(\widehat{A}=\widehat{H}=90^0\)

\(\widehat{B}\)\(\text{chung}\)

\(\text{Vậy tam giác ABC~tam giác HBA(g.g) }\)

\(\Rightarrow\frac{AB}{HB}=\frac{BC}{AB}\Rightarrow AB^2=HB.BC\)

B.cHỨNG MINH TƯƠNG TỰ

5 tháng 4 2017

b) xét tam giác HAB và tam giác HCA ,có:

góc BHA = góc CHA (=90)

góc BAH = góc HCA (cùng phụ B)

nên tam giác HAB ~ tam giác HCA

=> HA/HB = HC/HA 

=> HA= HC.HB