Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F H K N M P 1 2 1 1
a)
Ta có: \(\widehat{NKE}=\widehat{KHE}+\widehat{E_1}\)(góc ngoài \(\Delta\)KHE)
\(\Delta\)AHE vuông tại E có: N là trung điểm AH => \(NE=NH=\frac{1}{2}AH\)
Tam giác NEH cân tại N => \(\widehat{NEH}=\widehat{NHE}=\widehat{KHE}\)
Mà \(\widehat{NKB}=\widehat{KHE}+\widehat{E_1}\)
\(\widehat{NED}=\widehat{NEH}+\widehat{E_2}\)
\(\Rightarrow\widehat{NEK}=\widehat{NED}\)
\(\Rightarrow\Delta\)NEK đồng dạng \(\Delta NED\)
=> \(\frac{NE}{ND}=\frac{KE}{ED}\)
Do E là phân giác \(\widehat{DEF}\)=> \(\frac{HK}{HD}=\frac{NH}{ND}\)(đpcm)
b) Định lý Ceva PD,MH,KB đồng quy khi \(\frac{MB}{BD}\cdot\frac{DH}{HK}\cdot\frac{KP}{PM}=1\)
By: Đỗ Quang Thiều (refundzed)
Câu b) chi tiết hơn và sử dụng kiến thức lớp 9
Từ cái tỉ số ở câu đầu
Ta CM đc: \(MK//BH\)
\(\Leftrightarrow\widehat{FPK}=\widehat{MPB}=\widehat{ABE}=\widehat{ACF}=\widehat{FDH}\)
Nên PFKD là tứ giác nội tiếp
Suy ra: \(\widehat{PDK}=\widehat{AFE}=\widehat{AHE}=\widehat{BHD}=\widehat{PKD}\)
Cho nên tam giác PKD cân tại P
=> PK=PD
Từ đây hiển nhiên PM=PK hay \(\frac{PK}{PM}=1\)
Xét tích: \(\frac{MB}{BD}\cdot\frac{DH}{HK}\cdot\frac{KP}{PM}=\frac{HK}{DH}\cdot\frac{DH}{HK}\cdot\frac{KP}{PM}=1\)
Theo Ceva đảo thì đồng quy
A B C E D F G N M
Theo bài ra:
G là trọng tâm tam giác ABC
Có \(BG=\frac{2}{3}BE\) mà \(BM=\frac{1}{3}BE\)=> \(BG=2.BM\)=> M là trung điểm BG
Có: \(CG=\frac{2}{3}CF\)mà \(CN=\frac{1}{3}CF\)=> \(CG=2.CN\)=> N là trung điểm CG
Xét tam giác GBC có: GD, BN, CM là 3 đường trung tuyến
=> GD, BN, CM đồng quy
mà A thuộc đường thẳng GD
=> AD; BN; CM đồng quy.
a) Xét \(\Delta EAB\)và \(\Delta FAC\)có :
\(\widehat{BEA}=\widehat{CFA}\left(=90^0\right)\)
\(\widehat{A}\)chung
\(\Rightarrow\Delta EAB\approx\Delta FAC\)(g.g)
\(\Rightarrow\frac{EA}{FA}=\frac{BA}{CA}\)(2 cặp cạnh tương ứng tỉ lệ)\(\Rightarrow\frac{EA}{BA}=\frac{FA}{CA}\)(tính chất của tỉ lệ thức)
Xét \(\Delta AEF\)và \(\Delta ABC\)có:
\(\widehat{A}\)chung.
\(\frac{EA}{BA}=\frac{FA}{CA}\)(chứng minh trên)
\(\Rightarrow\Delta AEF\approx\Delta ABC\left(c.g.c\right)\)(điều phải chứng minh)