K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2021

Đây là định lý Ceva nhé bạn!

Giả sử AA', BB', CC' đồng quy tại O.

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{A'B}{A'C}=\dfrac{S_{OA'B}}{S_{OA'C}}=\dfrac{S_{AA'B}}{S_{AA'C}}=\dfrac{S_{AA'B}-S_{OA'B}}{S_{AA'C}-S_{OA'C}}=\dfrac{S_{OAB}}{S_{OAC}}\).

Chứng minh tương tự: \(\dfrac{B'C}{B'A}=\dfrac{S_{OBC}}{S_{OBA}};\dfrac{C'A}{C'B}=\dfrac{S_{OAC}}{S_{OBC}}\).

Nhân vế với vế của các đẳng thức trên ta có đpcm.

P/s: Ngoài ra còn có các cách khác như dùng định lý Thales,..)

25 tháng 1 2018
Tự nghĩ đi !
25 tháng 1 2018

Chó DOA

28 tháng 2 2020

Em tham khảo cách chứng minh định lí Menelauyt. 

4 tháng 1 2017

sao đang lam cau hoi the ba noi

21 tháng 2 2020

gap gium cam on may bn nhiu

21 tháng 2 2020

Tự kẻ hình nha !!

\(\frac{HA}{AA'}+\frac{HB}{BB'}+\frac{HC}{CC'}\)

\(=\frac{S_{HBC}}{S_{ABC}}+\frac{S_{AHB}}{S_{ABC}}+\frac{S_{AHC}}{S_{ABC}}\)

\(=\frac{S_{ABC}}{S_{ABC}}=1\)

4 tháng 12 2017

A B C A' B' C' H Ta có : \(\dfrac{HA'}{AA'}=\dfrac{S_{HBC}}{S_{ABC}}\)( Vì có chung đáy BC nên tỉ số hai đường cao cũng bằng tỉ số hai diện tích) ( * )

Tương tự , ta cũng có :

\(\dfrac{HB'}{BB'}=\dfrac{S_{HCA}}{S_{ABC}}\) (**)

\(\dfrac{HC'}{CC'}=\dfrac{S_{HAB}}{S_{ABC}}\) (***)

Từ : ( * ; ** ; ***) =>\(\dfrac{HA'}{AA'}+\dfrac{HB'}{BB'}+\dfrac{HC'}{CC'}=\dfrac{S_{HAC}+S_{HAB}+S_{HBC}}{S_{ABC}}\)

\(=\dfrac{S_{ABC}}{S_{ABC}}=1\left(đpcm\right)\)