K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2016

a3 + b3 + c3 =3abc =>  a3 + b3 + c3  - 3abc = 0 =>  (a+b+c)(a2 + b2 + c2 - ab - bc - ac ) =0

=> a2 + b2 + c2 - ab - bc - ac =0  (vì a+b+c\(\ne\)0)

=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac=0

=>(a-b)2 + (b-c)2 + (a-c)2 =0  => a=b=c =>  tam giáp ABC  đều  =>  góc ABC bằng 60 độ

6 tháng 10 2016

quá dễ

16 tháng 8 2017

dễ thì làm coi

:-)

16 tháng 10 2020

Từ a3 + b3 + c3 = 3abc

<=> (a + b)(a2 - ab + b2) + c3 - 3abc = 0

<=> (a + b)3 + c3 - 3ab(a + b) - 3abc = 0

<=> (a + b + c)(a2 + 2ab + b2 - ac - bc + c2) - 3ab(a + b + c) = 0

<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0

<=> \(\orbr{\begin{cases}a+b+c=0\left(loại\right)\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)

<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

<=> a = b = c

=> tam giác đó là tam giác đều

b) Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

CM đúng (tự cm tđ)

Ta có: \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2xz}=\frac{9}{\left(x+y+z\right)^2}=9\)(vì x + y + z = 1)

Dấu "=" xảy ra <=> x = y = z = 1/3

16 tháng 10 2020

a) Vì a, b, c là độ dài ba cạnh của một tam giác => a, b, c > 0

Ta có : a3 + b3 + c3 = 3abc

<=> a3 + b3 + c3 - 3abc = 0

<=> ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0

<=> [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0

<=> ( a + b + c )( a2 + b2 + c2 + 2ab - ac - bc ) - 3ab( a + b + c ) = 0

<=> ( a + b + c )( a2 + b2 + c2 - ab - ac - bc ) = 0

<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)

Dễ thấy không thể xảy ra trường hợp a + b + c = 0 vì a, b, c > 0 

Xét TH còn lại ta có :

a2 + b2 + c2 - ab - ac - bc = 0

<=> 2(a2 + b2 + c2 - ab - ac - bc) = 2.0

<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0

<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ac + a2 ) = 0

<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0 (*)

Ta có : \(\hept{\begin{cases}\left(a-b\right)^2\\\left(b-c\right)^2\\\left(c-a\right)^2\end{cases}}\ge0\forall a,b,c\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)

=> Tam giác đó là tam giác đều ( đpcm )

8 tháng 4 2016

BT1: là 27/2

Mấy bài tiếp theo ko pit lm vì chưa dc hok

1 tháng 7 2016

giup mk